Dynamic multi-crop model to characterize impacts of pesticides in food

P. Fantke, R. Juraske
A. Antón, E. Sevigné, A. Kounina
Which food crop has highest pesticide load?
Goals

After the course, all participants will be able to:

• Explain the principles and processes involved in the distribution of pesticides applied to different food crops,

• Quantify potential health impacts from pesticide intake via food crop consumption, and

• Discuss different potentials for pesticide substitution.
Contents

• Background and scope
• Mass balance system
• From harvest fraction to intake fraction
• Characterization: factors and model
• Pesticide substitution
• Highlights and Summary
• **Background and scope**

 • Mass balance system

 • From harvest fraction to intake fraction

 • Characterization: factors and model

 • Pesticide substitution

 • Highlights and Summary
Problem Statement

- Pesticide application
- Deposition onto crops & soil incl. crop uptake
- Loss via wind drift, run-off & leaching
- Residues in harvested crop components
- Concentration in air & water, food residues
- Ingestion (treated crops)
- Ingestion (other)
- Inhalation

Total human exposure

Input: Present models (usually steady-state)

Output
Problem Statement

Problem: crop residues so far not considered!
Followed Approach – Aim

We aim at ...

- Quantifying potential health impacts caused by pesticide use (no arbitrary measures like ‘MRL’),
- Comparing pesticides in terms of their health impact,
- Giving recommendations for optimizing pesticide use.

Methodological tool of choice ...

- Life Cycle Impact Assessment (LCIA)
- Based on average values, not worst case assumptions (basis for comparative assessment)
Followed Approach – Impact Pathway

characterization factor
intake fraction
harvest fraction

application
mass in environment
harvest
intake
damage

environmental fate and crop uptake
harvested crop components
food processing

dose-response and severity
Followed Approach – Scope

Considered crops:

• Wheat (68% of cereals)
• Paddy rice (97% of paddy cereals)
• Tomato (15% of herbaceous vegetables)
• Apple (13% of fruit trees)
• Lettuce (14% of leafy vegetables)
• Potato (51% of roots and tubers)

45% of global vegetal consumption
• Background and scope
• **Mass balance system**
• From harvest fraction to intake fraction
• Characterization: factors and model
• Pesticide substitution
• Highlights and Summary
Physical System

evapotranspiration and gaseous deposition

particle deposition

volatilization and sorption

root uptake

xylem flux

phloem flux

biotransformation

root uptake
Modeled System

- System input
- System loss
- Diffusive transfer
- Advective transfer
- Degradation

- Xylem flux
- Phloem flux
- Evapotranspiration and gaseous deposition
- Particle deposition
- Volatilization and sorption
- Root uptake
- Root uptake
- Cell wall cuticle wax layer deposit
- Biotransformation
- RCF
- TCF
- LCF
- FCF
- Partitioning
Modeled System – Mass Balance

\[\frac{d\vec{m}(t)}{dt} = \mathbf{K} \vec{m}(t) \]

| \vec{m} : vector of masses [kg] |
| \mathbf{K} : matrix of rate constants \(k \) [d\(^{-1}\)] |
| \(t \) : time [d] |

Solution for pulse application ...

\[\vec{m}(t) = \exp(\mathbf{K} t) \vec{m}(0) \]

→ System will be diagonalized (decomposed) to arrive at solution with matrix exponential

→ Further reading: Fantke et al., 2013, *EMS*, 40: 316-324
Mass Balance – Rate Constants

\[
\frac{d\vec{m}(t)}{dt} = \mathbf{K} \vec{m}(t)
\]

\[
\vec{m} : \text{vector of masses [kg]}
\]
\[
\mathbf{K} : \text{matrix of rate constants } k \text{ [d}^{-1}\text{]}
\]
\[
t : \text{time [d]}
\]

Matrix of rate constants for ...

- Diffusive/advective transfers between compartments
 → 'off-diagonal elements'
- Degradation processes within compartments
 → incorporated into 'main diagonal elements'
Mass Balance – Rate Constants

\[
\frac{d\mathbf{m}(t)}{dt} = \mathbf{K}\mathbf{m}(t)
\]

Symbols:
- \(\mathbf{m}\) : vector of masses [kg]
- \(\mathbf{K}\) : matrix of rate constants \(k\) [d\(^{-1}\)]
- \(t\) : time [d]

Matrix \(\mathbf{K}\):

\[
\begin{array}{cccc}
\text{air} & \text{soil} & \cdots & \text{leaf} \\
\hline
\text{air} & -k_{\text{air, total}} & k_{\text{air} \leftarrow \text{soil}} & \cdots & k_{\text{air} \leftarrow \text{leaf}} \\
\text{soil} & k_{\text{soil} \leftarrow \text{air}} & -k_{\text{soil, total}} & \cdots & 0 \\
\text{leaf} & k_{\text{leaf} \leftarrow \text{air}} & 0 & \cdots & -k_{\text{leaf, total}} \\
\end{array}
\]
Mass Balance – Rate Constants

\[
\frac{d\vec{m}(t)}{dt} = \mathbf{K} \vec{m}(t)
\]

\[\mathbf{K} = \begin{pmatrix}
k_{11} & \cdots & k_{1n} \\
\vdots & \ddots & \vdots \\
k_{n1} & \cdots & k_{nn}
\end{pmatrix}
\]

with \(k_{ij} = \begin{cases}
\frac{k_{ij}}{k_{loss,i} + \sum_{l=1, l\neq i}^{n} k_{li}} & \text{for } i \neq j \\
- \left(k_{loss,i} + \sum_{l=1, l\neq i}^{n} k_{li} \right) & \text{for } i = j
\end{cases}\)

- \(\vec{m}\): vector of masses [kg]
- \(\mathbf{K}\): matrix of rate constants \([d^{-1}]\)
- \(t\): time [d]
Mass Balance – Initial Conditions

\[\frac{d\vec{m}(t)}{dt} = K \vec{m}(t) \]

- \(\vec{m} \): vector of masses [kg]
- \(K \): matrix of rate constants \(k \) [d\(^{-1}\)]
- \(t \): time [d]

Initial mass (applied pesticide mass) ...
- Is defined as part of vector \(\vec{m}(t) \) at time \(t = 0 \)
- \(\rightarrow \) application time

Final mass (pesticide residues) ...
- Vector \(\vec{m}(t) \) at time \(t > 0 \) \(\rightarrow \) harvest time
Mass Balance – Example

Insecticide cyromazine applied to wheat

harvest time = day 67

grains: 0.28 g/kg

example:
100 g applied/ha,
6 t grain yield/ha

≅ 4.7 µg/kg_{grains}
(MRL: 50 µg/kg_{grains})
Mass Balance – Evaluation

- Tebuconazole vs. Chlorothalonil (Wheat)
- Propisochlor vs. Carbaryl (Rice (Paddy))
- α-Cypermethrin vs. Captan (Tomato)
- Propargite vs. Captan (Apple)
- Azoxystrobine vs. Fenitrothion (Lettuce)
- Chlorpyrifos vs. Prothiofos (Potato)
• Background and scope
• Mass balance system
• **From harvest fraction to intake fraction**
• Characterization: factors and model
• Pesticide substitution
• Highlights and Summary
Harvest Fraction

Mass in all harvested crop parts relative to total applied mass

\[hF = \frac{\sum_{i=1}^{n} m_i(t)}{m_{\text{app}}} \]

- Pesticide mass in harvest
- Applied pesticide mass

<table>
<thead>
<tr>
<th>(hF)</th>
<th>harvest fraction [kg_{in, harvest}/kg_{applied}]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m_i)</td>
<td>residual mass in compartment (i) [kg_{in, harvest}]</td>
</tr>
<tr>
<td>(m_{\text{app}})</td>
<td>total applied mass [kg_{applied}]</td>
</tr>
<tr>
<td>(t)</td>
<td>harvest time [d]</td>
</tr>
</tbody>
</table>
Intake Fraction

Mass taken in via consumption relative to total applied mass

\[iF = hF \times PF \]

- \(iF \): human intake fraction \([\text{kg}_{\text{intake}}/\text{kg}_{\text{applied}}]\)
- \(hF \): harvest fraction \([\text{kg}_{\text{in harvest}}/\text{kg}_{\text{applied}}]\)
- \(PF \): food processing factor \([\text{kg}_{\text{intake}}/\text{kg}_{\text{in harvest}}]\)

Food processing ...
Intake Fraction – Example
Comparison of 121 pesticides

time to harvest

kg intake per kg applied

crop consumption
Intake Fraction – Influencing Aspects

Δt : time to harvest

Δt : time to harvest

intake fraction

Δt = 10
Δt = 30
Δt = 100

wheat

degradation half life in crop [days]

potato

residence time in soil [days]
• Background and scope
• Mass balance system
• From harvest fraction to intake fraction
• **Characterization: factors and model**
• Pesticide substitution
• Highlights and Summary
Characterization Factor

Human toxicity potential relative to total applied mass

\[CF = iF \times \beta \times DF \]

- \(CF \): human toxicity characterization factor [DALY/kg\text{applied}]
- \(iF \): human intake fraction [kg\text{intake}/kg\text{applied}]
- \(\beta \): dose-response slope factor [incidence risk/kg\text{intake}]
- \(DF \): severity factor [DALY/incidence]

Human toxicity effect factor [DALY/kg\text{intake}]

\(\rightarrow \) DALY: disability-adjusted life year
Human Toxicity Effect Factor

Dose-response based on human trials ➔ not available
 • Not ethically defendable
 • Most human studies focus on acute exposure

Dose-response based on animal trials ➔ uncertain!
 • Cancer effects: derived from chronic lifetime dose affecting 50% of exposed population (ED_{50})
 • Non-cancer effects: ED_{50} rarely available ➔ ED_{50} estimated from no-observed effect level (NOEL) assuming linear slope
Characterization Factor – Application
Pesticides applied to fruit trees in EU24 in 2003

Parathion-Methyl
Characterization Model – dynamiCROP

dynamiCROP ...

• Is a dynamic plant uptake model,
• Covers human exposure to pesticides from crop intake,
• Includes various crop types,
• Is based on matrix algebra (flexible compartment set),
• Uses Matlab to solve the matrix exponential,
• Is available for download at http://dynamicrop.org
Characterization Model – Framework

<table>
<thead>
<tr>
<th>INPUT DATA FRAMEWORK</th>
<th>Substance Property Data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Crop Property Data</td>
</tr>
<tr>
<td></td>
<td>System Data / Boundary Conditions</td>
</tr>
<tr>
<td></td>
<td>Exposure / Effect Data</td>
</tr>
<tr>
<td>FATE PROCESSES FRAMEWORK</td>
<td>Primary Processes</td>
</tr>
<tr>
<td></td>
<td>Secondary Processes</td>
</tr>
<tr>
<td></td>
<td>System Loss Processes</td>
</tr>
<tr>
<td>MASS COMPUTATION FRAMEWORK</td>
<td>Matrix Framework</td>
</tr>
<tr>
<td></td>
<td>System Eigendecomposition</td>
</tr>
<tr>
<td></td>
<td>Mass Conditions (steady state / time t)</td>
</tr>
<tr>
<td></td>
<td>Contributions to System Evolution</td>
</tr>
<tr>
<td>EXPOSURE / IMPACT FRAMEWORK</td>
<td>Harvest Fractions</td>
</tr>
<tr>
<td></td>
<td>Food Processing Factors</td>
</tr>
<tr>
<td></td>
<td>Direct Intake Fractions</td>
</tr>
<tr>
<td></td>
<td>Effect Framework (DRFs / ED$_{50}$)</td>
</tr>
<tr>
<td>OUTPUT DATA FRAMEWORK</td>
<td>Data Extraction</td>
</tr>
<tr>
<td></td>
<td>Uncertainty / Sensitivity Framework</td>
</tr>
<tr>
<td></td>
<td>Evaluation of Results</td>
</tr>
</tbody>
</table>
Characterization Model – Example Results
Health impacts from pesticides applied in EU24 in 2003

<table>
<thead>
<tr>
<th>crop class</th>
<th>DALY/year</th>
</tr>
</thead>
<tbody>
<tr>
<td>cereals</td>
<td>6.78</td>
</tr>
<tr>
<td>maize</td>
<td>3.77</td>
</tr>
<tr>
<td>oil seeds</td>
<td>8.82</td>
</tr>
<tr>
<td>potato</td>
<td>1.35</td>
</tr>
<tr>
<td>sugar beet</td>
<td>0.34</td>
</tr>
<tr>
<td>grapes/vines</td>
<td>724</td>
</tr>
<tr>
<td>fruit trees</td>
<td>113</td>
</tr>
<tr>
<td>vegetables</td>
<td>1100</td>
</tr>
<tr>
<td>total</td>
<td>1959 (4.75 to 808,535)</td>
</tr>
</tbody>
</table>

total ≡ 2.6 hours lost per person over lifetime
[upper limit: 45 days per person over lifetime]

Other stressors (EBoDE Report, 2011)
→ Exposure to particulate matter PM$_{2.5}$: 195 days/person
→ Non-smoker exposure to second-hand smoke: 24 days/person
Characterization Model – Uncertainty

Squared geometric standard deviation (GSD²) = 428

→ Output uncertainty range: from geomean/428 to geomean×428
(output variability >16 orders of magnitude across pesticides)
Characterization Model – Limitations

dynamiCROP is so far limited to ...

• Assess neutral organic pesticides,

• Assessing parent compounds (metabolites not included in assessment → can be assessed separately),

• Combination of Excel and Matlab (or only Matlab) → parameterized version works without Matlab
Characterization Model – Parameterization

\[y = y^{\text{crop}} + y^{\text{soil}} + \ldots \]

with

\[\log y^{\text{crop}} = \alpha^{\text{crop}} + \beta^{\text{crop}} \times z \]

\[z = f(\Delta t, \text{half-life}, \ldots) \]

... (factor 4 – 66 mean deviation over harvest fraction range of 10 orders of magnitude)
• Background and scope
• Mass balance system
• From harvest fraction to intake fraction
• Characterization: factors and model
• **Pesticide substitution**
• Highlights and Summary
Pesticide Substitution – Example

Focus (in comparing pesticides): human health impacts

Example crop: wheat

Assumption: all pesticides equally effective
Pesticide Substitution – Target Pests

Target pests for wheat as example crop (comparing what?)

• Fungi: e.g. leaf rust, mildew

• Insects: e.g. aphids, thrips

• Weeds: e.g. couch grass, foxtail
Pesticide Substitution – Scenario

<table>
<thead>
<tr>
<th>scenario</th>
<th>pesticide</th>
<th>target pests</th>
<th>kg_app/ha</th>
<th>DALY/ha</th>
<th>DALY/ha</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>(\beta)-cyfluthrin</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>13.75</td>
</tr>
<tr>
<td></td>
<td>carbaryl</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>1.48</td>
</tr>
<tr>
<td>2</td>
<td>cyhalothrin</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>0.008</td>
</tr>
<tr>
<td></td>
<td>esfenvalerate</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>0.012</td>
</tr>
<tr>
<td>3</td>
<td>(\alpha)-cypermethrin</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>0.015</td>
</tr>
<tr>
<td></td>
<td>deltamethrin</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>0.009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>cyproconazole</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>azoxystrobin</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>0.238</td>
</tr>
<tr>
<td>2</td>
<td>epoxiconazole</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>0.125</td>
</tr>
<tr>
<td></td>
<td>pyraclostrobin</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>0.175</td>
</tr>
<tr>
<td></td>
<td>fenpropimorph</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>0.45</td>
</tr>
<tr>
<td>3</td>
<td>tebuconazole</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td>0.219</td>
</tr>
<tr>
<td></td>
<td>chlorothalonil</td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>mancozeb</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>2.35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>pendimethalin</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td>fenoxaprop-p</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td>0.069</td>
</tr>
<tr>
<td></td>
<td>prosulfocarb</td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td>3.5</td>
</tr>
<tr>
<td>2</td>
<td>iodosulfuron</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>propoxycarbazone-sodium</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td>3</td>
<td>glyphosate</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>1.37</td>
</tr>
</tbody>
</table>
Pesticide Substitution – Results

fungicides
A: azoxystrobin, cyproconazole
D: epoxyconazole, fenpropimorph, pyraclostrobin
G: chlorothalonil, mancozeb, tebuconazole

insecticides
B: β-cyfluthrin, carbaryl
E: cyhalothrin, esfenvalerate
H: α-cypermethrin, deltamethrin

herbicides
C: fenoxyprop-P, pendimethalin, prosulfocarb
F: glyphosate
I: iodosulfuron, propoxycarbzone-sodium
Pesticide Substitution – Limitations

In reality, substitution must also consider ...

• Pesticide authorization (country-specific),
• Crop rotation and climate/soil conditions,
• Pest resistance toward certain pesticides,
• Varying pesticide costs (application count, etc.),
• Other impacts (ecotoxicity, groundwater contamination, etc.)
• Background and scope
• Mass balance system
• From harvest fraction to intake fraction
• Characterization: factors and model
• Pesticide substitution
• **Highlights and Summary**
Highlights

• We are able to characterize health impacts from food crop consumption

• Characterization factors available for 6 crop archetypes and >300 commonly used pesticides

• dynamiCROP model available → dynamic version (matrix-based) and parameterized version (linear, for inclusion in steady state frameworks)

• Highest uncertainties → dose-response and half-lives
Summary

• Exposure of general public to pesticides dominated by residues in food crops

• Lowest residues: root crops, highest residues: leafy crops (wash your salad!), but also fruits and vegetables

• Dynamic assessment required (time to harvest important)

• LCIA helps to compare impacts between pesticides and between stressors (pesticide health impacts low in comparison with e.g. PM → consider uncertainty!)

• Pesticide substitution helps reducing health impacts (other impacts may dominate → include in scenarios!)
Further Information?

Contact: pefan@dtu.dk