Spatial differentiation of chemical removal rates fromair in Life Cycle Impact Assessment

Serenella Sala' Dimitar Marinov, David Pennington

695	
696 697	European Commission - Joint Research Centre Institute for Environment and Sustainability - Sustainability Assessment Unit, Via Enrico Fermi 2749; T.P. 270; I-21027 Ispra (VA), Italy
698	Telephone: +39 0332 786417
699	
700 701	Corresponding author: serenella.sala@jrc.ec.europa.eu
702	
703	Supporting information
704	
705	Content of the Supporting information
706	
707	S1. List of chemical and chemical properties used in running the MAPPE Model
708	S2 Description of the MAPPE model
709	S3. Chemical space of organic chemicals in the USEtox database
710	S4. Variability of removal rates from air for the 34 chemicals in the test set (with advection)
711	S5. Patterns of variability of removal rates
712	S6. Relative importance of removal rates

713

714 S1. List of chemical and chemical properties used in running the MAPPE Model

- 715
- 716 The data provided below were taken from the USEtox database. For comparison in few cases the Omniitox project (Molander et al
- 717 2004) data were also presented (indicated at the top of the columns)

718 Table S1. Test set of chemicals and related properties used in MAPPE runs

							Air	Air	Soil	Ssoil	Water
Chemicals	Clusters	CAS	MW	Kow	Kaw	Kh25C	decay rate				
			[- /··· - 1]	r 1	r 1	$[Pa.m3.mol^{-1}]$	[1/-]	[1/h]	alpha_s	[1/b]	[1/-]
			[g/mol]	[-]	[-]		[1/8]	Omniitox	[1/8]	Omniitox	[1/8]
								database		database	
Tetrachloroethylene	1a	127-18-4	166	7,59E+02	7,15E-01	1,77E+03	3,50E-07	1,26E-03	1,13E-07	4,08E-04	1,10E-07
Carbon tetrachloride	1a	56-23-5	154	4,37E+02	1,11E+00	2,76E+03	1,13E-08		3,19E-08	1,15E-04	1,13E-07
Butadiene	1a	106-99-0	54	9,77E+01	2,97E+00	7,36E+03	1,13E-08		3,50E-07	1,26E-03	1,13E-07
Methomyl	2a	16752-77-5	162	3,98E+00	7,43E-09	1,84E-05	3,32E-06		3,83E-07	1,38E-03	3,49E-08
Acephate	2a	30560-19-1	183	1,41E-01	2,02E-11	5,01E-08	5,59E-06	9,18E-02	3,64E-06	1,31E-02	1,50E-07
Formaldehyde	2b	50-00-0	30	2,24E+00	1,36E-05	3,37E-02	5,31E-05	1,60E-02	3,50E-06	1,26E-02	2,01E-06
PCBs	3a	1336-36-3	292	1,26E+07	1,68E-02	4,15E+01	4,07E-07		2,14E-07	7,70E-04	5,70E-07
Phthalate, di(n-octyl)	3a	117-84-0	391	1,26E+08	1,04E-04	2,57E-01	1,03E-05		5,72E-07	2,06E-03	5,73E-07
Benzene, hexabromo-	3a	87-82-1	551	1,17E+06	1,13E-03	2,81E+00	5,73E-09		1,34E-07	4,81E-04	1,34E-07
Cypermethrin	3a	52315-07-8	416	3,98E+06	7,75E-06	1,92E-02	1,07E-05		1,54E-07	5,56E-04	1,60E-06
Mirex	3a	2385-85-5	546	7,94E+06	3,27E-02	8,11E+01	1,13E-06		3,50E-09	1,26E-05	1,13E-06
Dicofol	3b	115-32-2	370	1,05E+05	9,77E-06	2,42E-02	1,72E-06		1,32E-07	4,75E-04	2,14E-07
Heptachlor epoxide	3b	1024-57-3	389	9,55E+04	8,48E-04	2,10E+00	2,59E-06		2,74E-08	9,87E-05	2,74E-08
p-Dichlorobenzene	4a	106-46-7	147	2,51E+03	9,73E-02	2,41E+02	3,50E-07		3,50E-08	1,26E-04	1,13E-07
Aldrin	4a	309-00-2	365	1,02E+03	1,78E-03	4,40E+00	3,86E-05	1,39E-01	1,13E-08	4,08E-05	1,10E-08
1,1,2,2-Tetrachloroethane	4a	79-34-5	168	2,45E+02	1,48E-02	3,67E+01	1,13E-08		3,50E-08	1,26E-04	1,13E-07
Anthracene	4b	120-12-7	178	3,47E+04	2,25E-03	5,56E+00	3,50E-06		3,50E-08	1,26E-04	3,50E-07
gamma-HCH	4b	58-89-9	291	5,01E+03	2,08E-04	5,14E-01	1,85E-07		1,13E-08	4,08E-05	1,13E-08

Methanol	5a	67-56-1	32	1,70E-01	1,84E-04	4,55E-01	4,91E-07	1,70E-03	3,50E-06	1,26E-02	3,50E-06
1,2-Dichloroethane	5a	107-06-2	99	3,02E+01	4,77E-02	1,18E+02	1,13E-07		3,50E-08	1,26E-04	1,13E-07
Ethyl acetate	5a	141-78-6	88	5,37E+00	5,41E-03	1,34E+01	9,92E-07		1,13E-06	4,08E-03	2,01E-06
N-Nitrosodiethylamine	5a	55-18-5	102	3,02E+00	1,47E-04	3,63E-01	3,21E-05	3,19E-02	1,13E-07	4,08E-04	3,21E-05
Dimethyl phthalate	6a	131-11-3	194	1,32E+02	4,24E-06	1,05E-02	1,13E-06		3,50E-07	1,26E-03	1,13E-06
Thioperoxydicarbonic diamide, tetramethyl-	ба	137-26-8	240	5,37E+01	1,23E-05	3,04E-02	1,13E-06	4,08E-03	3,50E-07	1,26E-03	1,13E-06
Propoxur	6b	114-26-1	209	3,16E+01	5,77E-08	1,43E-04	3,85E-05	1,63E-01	3,50E-07	1,26E-03	3,50E-07
Captan	6с	133-06-2	301	2,00E+02	2,62E-07	6,48E-04	1,13E-05		3,50E-07	1,26E-03	1,13E-05
Pronamide	6c	23950-58-5	256	2,69E+03	3,95E-07	9,77E-04	6,62E-06		9,97E-08	3,59E-04	1,97E-07
1H-Isoindole-1,3(2H)- dione, 2- (trichloromethyl)thio -	бс	133-07-3	297	7,08E+02	3,09E-06	7,66E-03	7,87E-06		1,40E-08	5,04E-05	1,40E-08
Benomyl	бс	17804-35-2	290	2,00E+02	1,99E-10	4,93E-07	3,86E-05	1,39E-01	1,13E-07	4,08E-04	1,13E-06
Hexachlorobutadiene	7a	87-68-3	261	6,03E+04	4,16E-01	1,03E+03	1,50E-08	4,03E-05	1,13E-07	4,07E-04	1,10E-07
Hexachlorocyclopentadiene	7a	77-47-4	273	1,10E+05	1,09E+00	2,70E+03	1,97E-07		4,58E-07	1,65E-03	2,23E-06
Trifluralin	7b	1582-09-8	336	2,19E+05	4,16E-03	1,03E+01	1,13E-06	7,77E-02	1,13E-07	4,08E-04	1,13E-07
Hexachlorobenzene	7b	118-74-1	285	3,16E+05	6,86E-02	1,70E+02	2,62E-08		3,50E-09	1,26E-05	3,50E-09
Heptachlor	7b	76-44-8	373	1,86E+05	1,19E-02	2,94E+01	3,50E-06		1,13E-07	4,08E-04	3,50E-07

719 Explanation of abbreviations:

720 MW: Molecular weight

721 Kow: octanol-water partition coefficient

722 Kaw: air-water partition coefficient

Kh: Henry constant

- 725 S2 Description of the MAPPE model
- 726

727 MAPPE Global model is a GIS based model that grounds on concepts of the MAPPE model and computes the

removal rates of a substance with given physico-chemical properties in an evaluative environment, composed of

atmospheric boundary layer, soil, inland and seawater, for the whole world, with a resolution of 10x10 (except forsome parameters, which are defined at finer resolution (Zulian et al, 2011).

731 It is a spatialized steady state box model that computes chemical mass (M_x) for a certain grid cell as a algebraic 732 combination of the maps of emissions (E_x) and removal rates (K_x) for each medium:

733
$$M_x = \frac{E_x}{K_x}$$

734 where x indicates air, soil, or ocean.

735 In a similar way, the mass fluxes (L_x) of chemicals originated from a cell and available for long range transport 736 ("loads") are computed as:

$$737 \qquad L_x = M_x K_{adv,x}$$

738 where $K_{adv, x}$ is the map of advection removal rates, associated to wind, ocean currents, runoff and erosion from 739 soils.

- 740
- 741 For example in the atmospheric compartment we consider:
- 742
- 743 Air-aerosol partitioning
- The mass fraction Φ (-) of chemical that is in aerosol phase is computed as:

745
$$\phi = \frac{10^{-2.91} K_{oa} OC}{1 + 10^{-2.91} K_{oa} OC}$$

where K_{oa} (-) is the octanol-air partition coefficient of the chemical, usually set to K_{ow}/K_{aw} . The *OC* (kg m⁻³) is the concentration of particulate organic carbon in the atmosphere. Respectively, the K_{ow} (-) is the octanol-water partitioning coefficient and K_{aw} (-) – the air-water partitioning coefficient (non-dimensional Henry's constant). The later is calculated depending of the atmospheric temperature T(K) as:

750
$$K_{aw} = K_{aw_b} \exp(\gamma T)$$

751 where K_{aw_0} (-) is the air-water partitioning coefficient at reference temperature and γ (-) is the degradation 752 coefficient.

- 753
- 754 Wet deposition
- 755 The wet deposition velocity K_{wet} (m s⁻¹) is computed from total precipitation P (m day⁻¹) as:

756
$$K_{wet} = (S\phi + \frac{1}{K_{aw}}(1-\phi))\frac{P}{86400}$$

757 where S (-) is a scavenging factor usually set to $2*10^5$.

758

759 Particle dry deposition

760 The particle deposition velocity K_{part} (m s⁻¹) is computed from OC and the deposition flux of atmospheric particulate

761 organic carbon F_{OC} (kg m⁻² s⁻¹), as:

$$762 \qquad K_{part} = \phi \frac{F_{OC}}{OC}$$

763

764 Gas absorption

- The absorption velocity of atmospheric chemicals in gas phase depends on the type of ground surface. The following categories of ground surface are presently described in the model:
- agricultural or natural (bare) soil
- 768 impervious surface (urban, sealed soil)
- 769 desert or permanently frozen soil
- 770 forest deciduous
- 771 forest evergreen (broadleaves or conifers)
- water (lakes and rivers; oceans and seas).
- Conventionally, the following absorption velocities are given for the three types of forest:
- 775 deciduous: $v_{fd} = 0.036 \text{ m s}^{-1}$
 - evergreen, broadleaved: $v_{f,b} = 0.072 \text{ m s}^{-1}$
- 777 evergreen, conifers: $v_{f,c} = 0.0078 \text{ m s}^{-1}$
- 778

776

The above values are taken from MacLachlan and Horstmann (1998), as measured velocities on oaks (0.036 m s^{-1}) and spruce $(0.0078 \text{ m s}^{-1})$ in Germany; in the case of evergreen broadleaved forest it is assumed that the speed is ca.50% higher than the one of oaks. These velocities are referred to chemicals such as dioxins or polychlorobyphenils, having a molecular weight of about 300 g mol⁻¹, and need to be rescaled for other chemicals.

- 783
- 784 The absorption velocity on forests, $K_{gas, forest}$ (m s⁻¹) is therefore:

785
$$K_{gas,forest} = \left(0.036 \frac{Dec}{100} + 0.0078 \frac{Eve}{100} \left(1 - \frac{Bro}{100}\right) + 0.054 \frac{Eve}{100} \frac{Bro}{100}\right) \left(\frac{300}{MW}\right)^{0.5}$$

786 where *Dec* is the percentage of deciduous forest cover, *Eve* is the percentage of evergreen forest, and *Bro* is the 787 percentage of broadleaved forest.

- 788
- 789 The absorption velocity on soils, $K_{gas, soil}$ (m s⁻¹) is evaluated using a two-layer resistance model:

790
$$\mathbf{K}_{\text{gas,soil}} = \frac{D_a}{\left(\xi h + d_a\right)}$$

791 where h (m) is half of the assumed soil layer thickness (set to 0.3, hence h=0.15), ξ (-) is the tortuosity factor

792 $\xi = \frac{\omega^{\frac{2}{3}}}{(\omega - \theta)^2}$; ω (-) and θ (-) are soil porosity and soil water content, d_a is the thickness of the laminar

microlayer at the air-soil interface (which is assumed to be negligible compared to \Box h), and D_a is the diffusion coefficient of the chemical in air (m² s⁻¹).

795

By assuming constant values of porosity, set to 0.4, and soil water content, set to 0.2, the tortuosity coefficient equals 13.6. The diffusion coefficient in air (m^2/s) can be estimated as (Schwarzenbach et al 1993):

798
$$D_a = 0.000025 \cdot \left(\frac{18}{MW}\right)^{0.5}$$

799 where 0.000025 m²/s is the diffusion coefficient of H_2O in air.

800 Under these assumptions,

801
$$K_{gas, soil} = 0.0000123 \cdot \left(\frac{18}{MW}\right)^{0.5}$$

802

803 On impervious surfaces (e.g. urban, sealed soils) it is assumed that no absorption occurs. The same assumption was
804 applied to deserts or permanently frozen land.

805

806 On water, the velocity of absorption $K_{gas, water}$ (m s⁻¹) is evaluated using a two resistance model (see Pistocchi 807 2005 for details) in the form:

808
$$\mathbf{K}_{\text{gas,water}} = \frac{v_a v_w}{v_a K_{aw} + v_w}$$

809 where v_a and v_w are the diffusion velocities (m s-1) in air and water, given by:

810
$$v_a = \left(\frac{18}{MW}\right)^{0.335} \left(0.002 \cdot u_{10} + 0.003\right)$$

811
$$v_w = \left(\frac{32}{MW}\right)^2 \cdot \left(0.0000004 \cdot u_{10}^2 + 0.000004\right)$$

812

813 Then, for each grid cell in the model, the gas absorption is calculated as:
814
$$K_{gas} = K_{gas,water} \frac{w}{100} + \left(K_{gas,forest} \frac{\text{Dec} + \text{Eve}}{100} + K_{gas,soil} \left(1 - \frac{\text{Dec} + \text{Eve}}{100}\right)\right) \left(1 - \frac{\text{Imp}}{100}\right) \left(1 - \frac{w}{100}\right)$$

815 where w being the percentage of the cell that is water, and Imp the percentage that is impervious surface.

- 816
- 817 Degradation
- 818 The degradation processes in the atmosphere are specified by the degradation rate $K_{deg,a}$ (s⁻¹) as follows:

819
$$K_{\deg,a} = \alpha_a \exp(\beta_a T)$$

820 where α_a (s⁻¹) and β_a (-) are the degradation coefficients and temperature *T* is in Kelvin degrees.

821

822 Total atmospheric removal rate

823 The total atmospheric removal rate (d^{-1}) is:

824
$$K_{air} = 3600 \cdot \left(\frac{(K_{part} + (1 - \phi)K_{gas} + K_{wet})}{ABL} + K_{deg,a} + \frac{u_{10}}{X} \right) \cdot 24$$

- 825 where the last term represents the air intramedium transport or dilution by advection. Here u_{10} (m s⁻¹) is the wind
- 826 speed at 10m height and X (m) is the size of the calculation cell (approximately 100000 m corresponding to 1 degree
- 827 resolution). Then the term of advection rate quantifies the fraction of the air to be moved out through the lateral
- 828 borders of computational cells with u_{10} speed.
- 829 In the expression for K_{air} , the term for advection should be considered only for a single isolated emission which is an
- 830 ideal extreme case.

831 The other extreme case is when emissions occur in a uniform (homogeneous) way in space, thus the advection may 832 be neglected. In this case, one should consider:

833
$$K'_{air} = 3600 \cdot \left(\frac{(K_{part} + (1 - \phi)K_{gas} + K_{wet})}{ABL} + K_{deg,a} \right) \cdot 24.$$

Real situations should be in between these two extremes.

835

836 Deposition

837 Atmospheric deposition rate $Dep (d^{-1})$ is the fraction of the atmospheric removal rate in a cell, which quantifies the 838 air intermedia transfer and is computed as:

839
$$Dep = 3600 \cdot \frac{(K_{part} + (1 - \phi)K_{gas} + K_{wet})}{ABL} \cdot 24$$

- 841 Reference for this section
- 842 McLachlan M, Horstmann M (1998). Forests as filters of airborne organic pollutants: a model Env Sci Technol 32:
- 843 413-420
- 844 Pistocchi A (2005). Report on multimedia fate and exposure model with various spatial resolutions at the European
- 845 level, NoMiracle IP D2.4.1 technical report, 62 pp
- 846 Schwarzenbach R P; Gschwend P M, Imboden D. M (1993). Environmental Organic Chemistry. Wiley: New York
- 847 681pp.
- 848 Zulian, G, Isoardi P, Pistocchi A (2010) Global atlas of environmental parameters for chemical fate and transport
- 849 assessment, EC, EUR 24255 EN
- 850
- 851

852 S3. Chemical space of organic chemicals in the USEtox database

853

856

- 854 Fig.S1 Chemical space (Kow and Kaw) covered by the substances in USEtox ("database organics"). The box
- 855 indicates the chemical space assessed in the paper and detailed in Fig S2.

857 Figure S2. Chemicals within the chemical space defined to cluster chemicals in this paper

860 Figure S3. Atmospheric half life in days for the organic chemicals in the USEtox database (plotted for all the chemicals presented in the database)

S4. Variability of removal rates from air for the 34 chemicals in the test set (with advection)

Fig. S4 Results of Kair total (1/d) including advection for the 34 chemicals in the test set

Table <u>S2</u> Comparison of the MAPPE and USEtox results: MAPPE Median, 5% and 95% percentile, USEtox continental and global default for the total Kair (1/d) for the 34 chemicals in the case of no advection

	ΜΑΡΡΕ			USEtox		
				USEtox-	USEtox-	
	95%ile	5%ile	median	continental	global	
Tetrachloroethylene 1a	1.16E+01	3.02E-02	1.28E+00	1.11E-02	1.17E-02	
Carbon tetrachloride 1a	1.20E+01	9.50E-04	1.30E+00	1.65E-04	5.86E-04	
Butadiene 1a	2.03E+01	9.50E-04	2.18E+00	4.32E+00	4.32E+00	
Methomyl 2a	5.29E+02	2.99E-01	1.22E+02	1.12E+00	1.27E+00	
Acephate 2a	1.86E+05	7.19E+00	4.40E+04	1.39E+00	1.53E+00	
Formaldehyde 2b	2.47E+01	3.84E-01	3.02E+00	9.54E-01	1.29E+00	
PCBs 3a	8.76E+00	3.52E-02	9.73E-01	9.05E-02	1.22E-01	
Phthalate, di(n-octyl) 3a	2.07E+00	8.64E-01	1.29E+00	1.09E+00	1.15E+00	
Benzene, hexabromo- 3a	5.52E+00	4.94E-04	6.14E-01	1.84E-02	8.10E-02	
Cypermethrin 3a	2.53E+00	9.51E-01	1.53E+00	1.55E+00	1.64E+00	
Mirex 3a	6.48E+00	9.76E-02	7.84E-01	3.58E-02	2.40E-02	
Dicofol 3b	5.07E+00	1.49E-01	9.69E-01	6.41E-01	7.46E-01	
Heptachlor epoxide 3b	6.65E+00	2.24E-01	9.56E-01	3.84E-01	4.91E-01	
p-Dichlorobenzene 4a	1.23E+01	3.02E-02	1.35E+00	2.22E-02	2.70E-02	
Aldrin 4a	1.04E+01	3.34E+00	4.09E+00	4.24E+00	4.31E+00	
1,1,2,2-Tetrachloroethane 4a	1.15E+01	9.76E-04	1.24E+00	2.30E-02	5.11E-02	
Anthracene 4b	1.10E+01	3.02E-01	1.38E+00	2.64E+00	2.73E+00	
Gamma-HCH 4b	6.52E+00	1.60E-02	9.59E-01	7.74E-02	2.32E-01	
Methanol 5a	2.25E+01	4.08E-02	2.59E+00	1.62E-01	4.96E-01	
1,2-Dichloroethane 5a	1.50E+01	9.76E-03	1.62E+00	1.88E-02	2.97E-02	
Ethyl acetate 5a	1.60E+01	8.57E-02	1.80E+00	1.21E-01	1.96E-01	
N-Nitrosodiethylamine 5a	1.27E+01	7.65E-01	2.19E+00	2.40E+01	2.41E+01	
Dimethyl phthalate 6a	7.46E+00	9.77E-02	1.27E+00	5.13E-01	6.62E-01	
Thioperoxydicarbonic						
diamide, tetramethyl- 6a	7.69E+00	9.76E-02	1.14E+00	2.40E+01	2.41E+01	
Propoxur 6b	7.38E+01	3.92E+00	2.14E+01	2.71E+00	2.86E+00	
Captan 6c	1.67E+01	9.77E-01	4.82E+00	6.48E+00	6.61E+00	
Pronamide 6c	1.13E+01	5.72E-01	3.33E+00	1.50E+00	1.62E+00	
1H-Isoindole-1,3(2H)-dione, 2-	F 11F 00		1 645.00			
	5.11E+00	0.80E-01	1.64E+00	1.57E+00	1.70E+00	
	1.26E+04	2.41E+02	3.33E+03	1.16E+01	1.1/E+U1	
Hexachlorocyclopentadiene	9.24E+00	9.68E-04	9.95E-01	2.30E-03	3.28E-03	
7a	9.05E+00	1.70E-02	9.89E-01	2.57E-02	2.60E-02	
Trifluralin 7b	7.98E+00	9.76E-02	8.86E-01	1.58E+00	1.63E+00	
Hexachlorobenzene (HCB) 7b	8.85E+00	2.26E-03	9.53E-01	1.95E-02	2.51E-02	
Heptachlor 7b	8.03E+00	3.02E-01	1.13E+00	3.97E+00	4.00E+00	

S5. Patterns of variability

Series of maps of removal rates for selected chemical used to illustrate pattern of variability. The maps were calculated with MAPPE global at a spatial resolution of 1x1 degree

Butadiene

Fig S5. Map of the air removal rate of Butadiene (no advection case). Resolution of the map is $1^{\circ*1^{\circ}}$ degree. The pattern of variability is dominated by the variability of Kgas (removal rate due to gas exchange)

Fig.S6 Map of the removal rate due to gas exchange of Butadiene

Acephate

Fig. S7 Map of the air removal rate of Acephate (no advection case). Resolution of the map is $1^{\circ}*1^{\circ}$ degree .The pattern of variability is dominated by the variability of Kwet (removal rate due to wet deposition)

Fig. S8 Map of the air Acephate: removal rate due to wet deposition

Fig.S9 Map of the average annual precipitation

Methomyl

Fig. S10 Map of the air removal rate of Methomyl (no advection case)

PCB's

Fig. S11 Map of the air removal rate of PCB's (no advection case)

Fig. S12 Map of air removal rate due to gas exchange of PCB's

Fig. S13 Map of air removal rate due to wet deposition of PCB's

Fig. S14 Map of air removal rate due to particle dry deposition of PCB's

Hexabromobenzene

Fig. S15 Map of total air removal rate of Hexabromobenzene (no advection case)

Fig. S16 Map of air removal rate due to gas exchange of Hexabromobenzene

Fig. S17 Map of air removal rate due to wet and dry deposition of Hexabromobenzene

Cypermethrin

Fig. S18 Map of total air removal rate of Cypermethrin (no advection case)

Lindane

Fig. S19 Map of total air removal rate of Lindane (no advection case)

Fig. S20 Ratio of removal rate from air due to particle dry deposition to Kair (no advection) for Lindane

Fig. S21 Ratio of removal rate from air due to wet deposition to Kair (no advection) for Lindane

Fig. S22 Ratio of removal rate from air due to gas exchange to Kair (no advection) for Lindane

Fig. S23 Ratio of removal rate from air due to degradation to Kair (no advection) for Lindane. In this case Kdeg is dependent by temperature

S6. Relative importance of removal rates

Fig. S25 Relative importance of the removal rates of the chemical in the test set. Removal rates from USEtox (removal to stratosphere, degradation, wet and dry deposition, gas adsorption) are plotted. MAPPE median and USEtox global results are also presented.

