

Uncertainty analysis

Lecture

Mark Huijbregts
Department of Environmental science
Radboud University

Contents

- 1. Introduction
- 2. Typologies
- 3. Tools
- 4. Assignment

Difficulties in LCA (I)

- Not every factory has the same emissions
- Emissions will differ from year to year
- Parameters may include measurement errors or may not be measured at all
- Which value should you choose?

Difficulties in LCA (II)

- Allocation in multi-output systems can be done in many ways
- Midpoint or endpoint impact assessment?
- Choice for time horizon?
- Which method should you select?

Difficulties in LCA (III)

How to deal with lack of spatial detail?

How to assess sum emissions?

How to deal with unrepresentative data?

How to handle ignorance?

Uncertainty versus variability

Uncertainty: The value of a parameter is not exactly known.

Uncertainty can be reduced by additional research.

Variability: The value of a parameter differs between individuals

(interindividual), places (spatial) or in time (temporal).

Variability is inherent in the system and cannot be

reduced by additional research.

Types of uncertainty

- Statistical uncertainty
- Uncertainty due to <u>choices</u>
- Model uncertainty

Other terminology used:

systematic errors, random errors, data uncertainty, completeness uncertainty, subjective judgement, contextual uncertainty, preferential uncertainty, ...

Qualitative assessment: life cycle impact assessment

LCIA framework and requirements

http://lct.jrc.ec.europa.eu/pdf-directory/ILCD-

Handbook-LCIA-Framework-requirements-online-

12March2010.pdf

Defining (and applying) evaluation criteria to life cycle impact assessment methods commissioned by the JRC-Ispra

Qualitative assessment: LCIA (I)

Evaluation criteria categories

Introduction

Completeness of scope

Environmental relevance

Scientific robustness & Certainty

Documentation & Transparency & Reproducibility

Applicability

Stakeholder acceptance criteria

Qualitative assessment: LCIA (II)

Evaluation:

A : full compliance

B: compliance in all essential aspects

C: compliance in some aspects (``so-so``)

D: little compliance

E: no compliance

Results EU-LCIA best practice project

Recommendations of methods and factors

- ... at midpoint and at endpoint
- ... in a consistent framework, where possible

Classification of recommendations

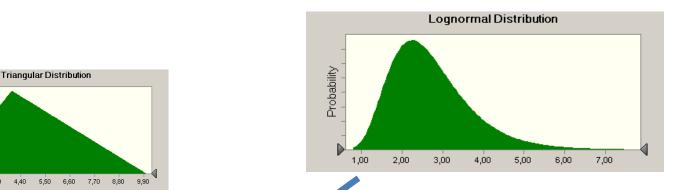
- I: Recommended and satisfactory
- II: Recommended, some improvements needed
- III: Interim, i.e. the most appropriate among the existing approaches but immature for recommendation

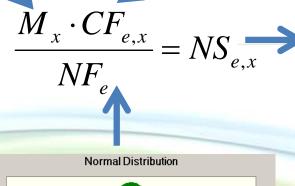
Identification of future research needs

- Classification according to importance
- Estimation of work load

Impact category	Recommended model Midpoint	Class.	Recommended model Mid to Endpoint	Class.
Climate change	IPCC (GWP) (100 years)	I	ReCiPe	III
Ozone depletion	WMO (ODP) (infinite)	I	ReCiPe	III
Human toxicity, carcinogenics	USEtox	II/III	DALY calculation applied to USEtox midpoint	II/III
Human toxicity, non- carcinogenics	USEtox	II/III	DALY calculation applied to USEtox midpoint	III
Particulate matter/Respiratory inorganics	Not settled yet: Greco et al., 2007 or RiskPoll or ReCiPe	I/II	Adapted DALY calculation applied to midpoint	II
Ionising radiation, human health	Frischknecht et al., 2000	II	Frischknecht et al., 2000	III
lonising radiation, ecosystems	Garnier-Laplace et al., 2008	III	PDF calculation applied to midpoint	III

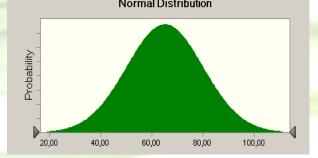
Impact category	Recommended model Midpoint	Class.	Recommended model (Mid to) Endpoint	Class.
Photochemical ozone formation	LOTOS-EUROS as applied in ReCiPe	=	ReCiPe for human health, nothing for vegetation	=
Acidification	Accumul. Exceedance	II	ReCiPe	III
Eutroph. terrestrial	Accumul.Exceedance	II	None	1
Eutroph. aquatic	ReCiPe	II	ReCiPe for freshwater, none for marine waters	III
Ecotoxicity	USEtox	II/III	PDF calculation applied to USEtox midpoint	III
Land use	Milà i Canals	III	ReCiPe	III
Resource depletion, water	Swiss Ecoscarcity	III	None	-
Resource depletion, mineral . fossil (and renewable)	Category 1: None Category 2: EDIP97 update 2004	- II	Category 4: ReCiPe	III

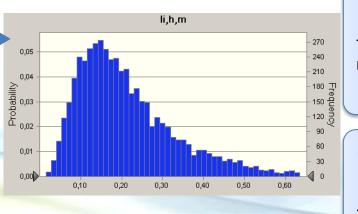

LC-IMPACT


Statistical uncertainties

Monte Carlo simulation

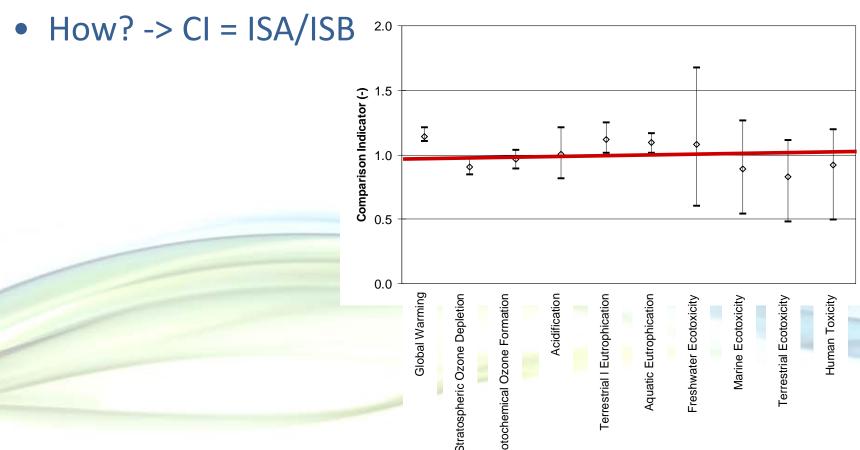
- 1. define uncertainty distributions for input parameters: lognormal, triangular, normal, uniform, etc...
- 2. translate input uncertainties in output uncertainties by probabilistic sampling: 1,000-10,000 runs
- 3. visualize and communicate uncertainty in LCA outcomes

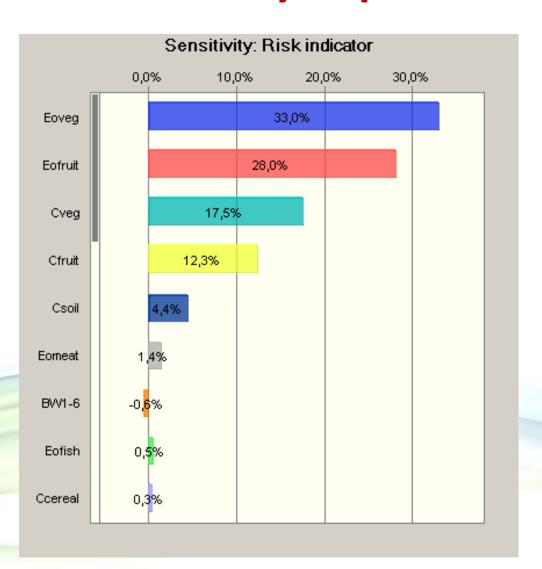

Monte Carlo simulation



Probability

3,30




 Account for correlations between two product systems in MC

LC-IMPACT

Uncertainty Importance

To obtain a high score in the sensitivity chart a parameter must have:

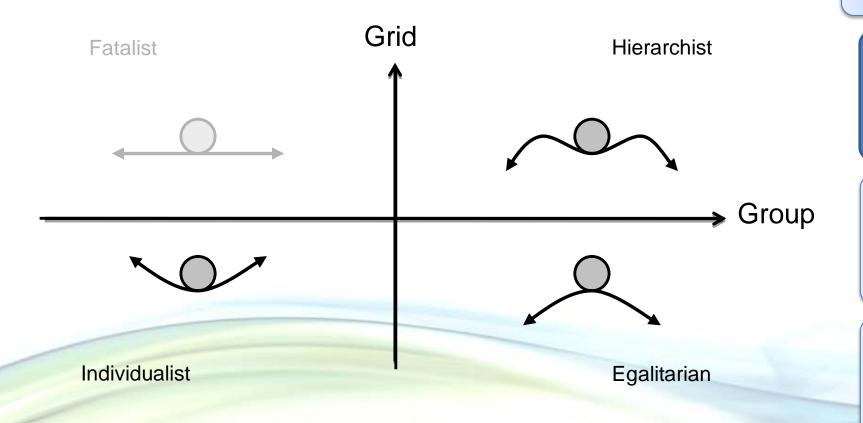
- considerable influence on the comparison indicator
- large variance (broad range of input values)

Model and choice uncertainty

Choice analysis

- 1. Identify number of options
- 2. Calculate outcomes per option

Cultural Theory....



Cultural Theory

- <u>Individualists</u>: act on their own; external rules and institutions less important. Natural systems as being inherently stable and inexhaustible
- <u>Hierarchists</u>: aim at maintaining the system; natural systems as being stable and manageable within certain limits.
- <u>Egalitarians</u>: members of their group are equal. Rules imposed from outside the group will be rejected. Regard natural systems as being vulnerable
- <u>Fatalists</u>: Act on their own. Victims of exogenous rules. Experience the world as being governed by chance.

LC-IMPACT

Cultural Theory

Infinite

0%

No

No

yes

NO_x

8h ozone

Pessimistic

All effects

All substances

From SO₂, NH₃,

Cultural Theory

20 years

Optimistic

100 years

Baseline

Definite/probabl

IARC 1, 2A,2B

e/possible

From SO₂

8h ozone

3%

No

No

Yes

Cartarar Tricory							
Impact category	Value choice	Individualist	Hierarchist	Egalitarian			

5%

Yes

Yes

No

Definite

IARC 1

24h ozone

No

Time horizon

All impact categories

Climate change

Ozone depletion

Ionizing radiaition

Respiratory inorganics

Human toxicity

Ozone formation

Discount rate

Age weighting

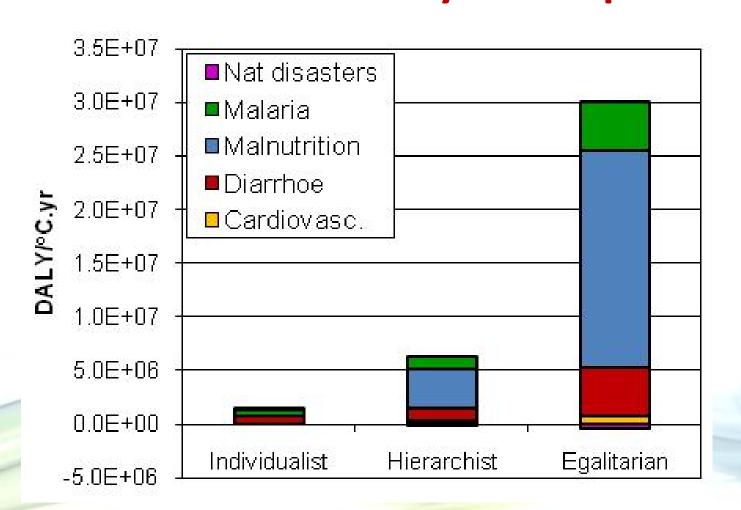
Positive effects

development

Effects included

Carcinogenity

Secondary PM


Ozone scenario

Future

Cataract

LC-IMPACT

Cultural Theory - Example

Reducing model uncertainty

- Expand number of stressors
- Implement spatial detail
- ...

LCA software

Uncertainty analysis

- 1. CMLCA (www.leidenuniv.nl/cml/ssp/software/)
- 2. Simapro (www.pre.nl/simapro)

Summary

- Uncertainties not always assessed in LCA
- Statistical uncertainty: Monte Carlo simulation,

- Choice and model uncertainty: Cultural theory,

- Ignorance: further research!!