

Impact assessment of water consumption in LCA

Introduction

Introduction

- Water use in LCA has been widely neglected in the past
 - Mainly in agriculture (more recent focus in LCA)
 - Water consumption less relevant in northern European countries
 - Water is a cheap resource (often not recorded)
 - Leading LCI databases such as ecoinvent have unsufficient information on water use

Regionalization is required

- On global average, there is no water scarcity
- Different impacts different regions/archetypes:
 - Ecosystems
 - Humans
 - Stock/fund resources
- Inventory
 - Water consumption mainly relevant in agriculture regional aspect crucial (also on inventory level)

Challenges

- Increased complexity (time requirements for LCA)
- Regionalized inventory data
- Regional supply chains
 - Connected with socio-economic circumstances
- Uncertainties (inventory & impacts)
 - New problem: picking the wrong location
- Software implementation & applicability
 - So far no LCA software can handle regionalized LCA

Water resources overview

Natural cycle and man-made issues

The Water Cycle

Source: U.S. Department of the Interior | U.S. Geological Survey URL: http://ga.water.usgs.gov/edu/watercycle.html

Hydrosphere - volumes

Source: Shiklomanov and Rodda (2003) ISBN: 0 521 8208585

Global average renewal rates

Table 1.14. Periods of renewal of water resources onthe Earth

Water of hydrosphere	Period of renewal
World Ocean	2 500 years
Ground water	1 400 years
Polar ice	9 700 years
Mountain glaciers	1 600 years
Ground ice of the permafrost zone	10 000 years
Lakes	17 years
Bogs	5 years
Soil moisture	1 year
Channel networks	16 days
Atmospheric moisture	8 days
Biological water	several hours

Flow resource (renewable)

Global annual water flows

- Precipitation on land: 100'000 km³ / year
- Unproductive evaporation on land: 23'000 km³ / year
- Available water (runoff & transpiration): 77'000 km³ / year (Alcamo et al 2003)
 - **Transpiration** (plants): **40'000** km³ / year (Rost et al. 2008)
 - ▶ In crops 6'000 km³ / year
 - Runoff: 35'000 km³ / year (Rost et al. 2008)
- Human water use: 3'600 km³ / year (Alcamo et al 2003)
- Irrigation water consumption: 1'000-2'000 km³ / year

Global water scarcity

- Runoff: 35'000 km³ / year (Rost et al. 2008)
- Suggested safe operational limit: 4000 km³ / year (Rockström et al. *Nature 2009)*

Precipitation distribution

Relevance of location

Precipitation variability (temporal distribution)

Coefficient of Variation (STD/mean) of monthly precipitation

Structure of LC-Impact methods for water use

C-IMPACT

Overview of developed LCIA factors

LCI

LCIA

Impact River Biodiversity (CF_{river}) (Hanafiah et al.; Chapter 1) Impact Wetland Biodiversity (CF_{WLSW}) Surface water (Verones et al.; Chapter 4-5) consumption [m³] Impact Human Health (CF_{HH}) (Pfister et al.; Chapter 2) Impact wetland biodiversity (CF_{WL,GW}) Groundwater (Verones et al.; Chapter 4-5) consumption [m³] Impact terrestrial biodiversity (CF_{TGW}) (van Zelm et al.; Chapter 3) Net change in green water consumption ? (production system – natural system) [m3] (Nuñez et al., Chap. 8)

Impacts on ecosystem quality

- Impacts on terrestrial biodiversity
- Impacts on river biodiversity
- Impacts on specific wetland biodiversity

- Data available for the Netherlands
- 625 terrestrial plant species; 141 on red list
- Endpoint level

Hanafiah et al. 2011: Reduced river flow

• Reduced fish species as a function of reduced river flow (Q)

 $CF_{wc,i} = FF_i \cdot EF_i = \frac{dQ_{mouth,i}}{dW_i} \cdot \left(\frac{dPDF_i}{dQ_{mouth,i}} \cdot V_i \right)$ PDF = potentially disappeared fraction of species V = river volume

Impacts of water consumption on wetland biodiversity

Definition of wetlands

Very diverse types and (often) species-rich

Ramsar Convention: «[...] areas of marsh, fen, peatland or water, whether natural or artificial, permanent or temporary, with water that is static or flowing, fresh, brackish or salt, including areas of marine water the depth of which at low tide does not exceed six metres»

Wetlands of international importance

- 1184 inland wetlands of international importance
- 1033 surface water-fed, 151 groundwater-fed

Fate factors: Surface water-fed wetlands

Simplified hydrological balancing for each wetland site

Fate factors: Groundwater-fed wetlands

Effect factors (I)

- Factors for
 - Waterbirds
 - Non-residential birds
 - Amphibians
 - Reptiles
 - Water-dependent mammals

Effect factors (II)

Characterization factors

 Delineation of watershed for each SW wetland

Characterization factors

 Delineation of Areas of Relevance for each GW wetland

SW

GW

Application example (only water consumption) (I)

 Production of a bunch of 10 roses in Kenya and the Netherlands

4.1 l/rose total 3.4 l/rose SW 0.7 l/rose GW

1.6 l/rose SW 0 l/rose GW Sources: http://www.kenyaweeklypost.com/modules.php?name=News&file=article&sid=1487 http://en.wikipedia.org/wiki/Lake_Naivasha http://www.nature.org/ourinitiatives/regions/africa/elly-goes-home-new-school-and-naivasha.xml http://flickrhivemind.net/Tags/vanmiddag/Recent

http://www.flickr.com/photos/dennis87/390085669/

http://en.wikipedia.org/wiki/File:LocatieBleiswijk.png

Application example (only water consumption) (II)

+ Vulnerability, CpA,

+ Amount of water consumed, source of water consumed

Potential future improvements

- Larger coverage of wetlands (not only such of international importance)
- If better hydrogeological data is available (some time) → reduce uncertainties
- Consider interactions between surface water and groundwater

Local case study

- Differences to global approach
 - Better data availability
 - Site-specific conditions can be taken into account
- More detailed modelling possible
 - Water balances for different scenarios
 - Salinity balances
 - Temporal and spatial explicit modeling of thermal plume

Local case study: Peru

- Chancay-Huaral, Peru
- 3095 km² in total
- 1245 km² in lower valley
- Rio Chancay-Huaral
 - 30 mm/a precipitation
 - 260 km² irrigated agriculture
 - Natural vegetation: 36 ha->Santa Rosa

Local case study: Peru

- Area changes for each scenario (2020):
 - Asparagus:+0.01ha
 - Drip irrigation:-0.4ha
 - No irrigation:-2ha

Impacts of water consumption on the salinity in wetlands

Local case study: Spain

• Albufera de Adra

Map source: Google earth

Fate factor

- Water balances
 - Dry months
 - Wet months
- Salt balances
 - Dry months
 - Wet months
- Solving with GAMS

$$FF = \frac{\Delta FGW}{\Delta ET crop} \frac{\Delta C_{N} \cdot V_{N}}{\Delta FGW} [g \cdot l^{-1} \cdot m^{3} \cdot yr \cdot m^{-3}]$$

Effect factor

- Based on SSD for salinity
- EC50s for different local species

$$EF_{Sal} = \frac{\Delta PAF_{Sal}}{\Delta Sal} = \frac{0.5}{HC50_{Sal}} [PAF \cdot l \cdot g^{-1}]$$

Results - Fate factor

- Sensitive to changes in salinity
- Varies between:
 - Max 6.72 g·l⁻¹·m³·yr·m⁻³
 - Min 0.25 g·l⁻¹·m³·yr·m⁻³

Results – Effect factor

Application to crop growing systems

Category impact	Tomato		Cucumber Zucchini		Melon		Aubergine			
Unit	species·yr·kg ⁻¹	%								
Salinity impact due to water use	7.16 x10 ⁻¹³	0.08	3.84 x10 ⁻¹³	0.05	1.07 x10 ⁻¹²	0.02	1.72 x10 ⁻¹²	0.09	8.14E-13	0.02
Climate change	6.16 x10 ⁻¹⁰	69.7	5.85 x10 ⁻¹⁰	73.2	1.96 x10 ⁻⁹	37.4	7.07 x10 ⁻¹⁰	38.3	3.67 x10 ⁻⁹	70.4
Terrestrial acidification	2.32 x10 ⁻¹²	0.26	2.12 x10 ⁻¹²	0.27	9.88 x10 ⁻¹²	0.19	3.38 x10 ⁻¹²	0.18	1.43 x10 ⁻¹¹	0.28
Freshwater eutrophication	3.85 x10 ⁻¹³	0.04	3.46 x10 ⁻¹³	0.04	5.63 x10 ⁻¹³	0.01	3.82 x10 ⁻¹³	0.02	2.56 x10 ⁻¹²	0.05
Terrestrial ecotoxicity	2.40 x10 ⁻¹¹	2.71	2.10×10^{-12}	0.26	4.73 x10 ⁻¹²	0.09	3.08 x10 ⁻¹²	0.17	7.38 x10 ⁻¹¹	1.42
Freshwater ecotoxicity	2.59 x10 ⁻¹⁴	0.00	1.10 x10 ⁻¹⁴	0.00	1.39 x10 ⁻¹³	0.00	7.65 x10 ⁻¹⁴	0.00	1.14 x10 ⁻¹³	0.00
Marine ecotoxicity	1.21 x10 ⁻¹⁶	0.00	4.86 x10 ⁻¹⁷	0.00	1.86 x10 ⁻¹⁶	0.00	8.28 x10 ⁻¹⁷	0.00	5.33 x10 ⁻¹⁶	0.00
Agricultural land occupation	2.15 x10 ⁻¹⁰	24.4	1.82 x10 ⁻¹⁰	22.7	3.12 x10 ⁻⁰⁹	59.5	1.08 x10 ⁻⁹	58.5	1.25 x10 ⁻⁹	24.1
Urban land occupation	8.11 x10 ⁻¹²	0.92	1.29×10^{-11}	1.61	4.48 x10 ⁻¹¹	0.86	2.18E x10 ⁻¹¹	1.18	7.62 x10 ⁻¹¹	1.46
Natural land transformation	1.68 x10 ⁻¹¹	1.90	1.52 x10 ⁻¹¹	1.90	9.87 x10 ⁻¹¹	1.88	2.72 x10 ⁻¹¹	1.47	1.20 x10 ⁻¹⁰	2.30
Total	8.84 x10 ⁻¹⁰	100	7.99 x10 ⁻¹⁰	100	5.24 x10 ⁻⁹	100	1.84 x10 ⁻⁹	100	5.21 x10 ⁻⁹	100

Potential future improvements

• Inclusion of more taxa

• Generalization to a global level to make it applicable for LCA

Impacts of water consumption on Human Health

Pfister et al 2009: Impacts on human health

 Main pathway is malnutrition due to lack of freshwater and diminished agricultural yields

$$\Delta HH_{malnutrition,i} = \underbrace{WSI_{i} \cdot WU_{\% a griculture,i}}_{WDF_{i}} \cdot \underbrace{HDF_{malnutrition,i} \cdot WR_{malnutrition}}_{EF_{i}} \cdot DF_{malnutrition} \cdot WU_{consumptive,i}$$

HH_{malnutrition.i}: human health damage (DALY)

WSI: physical water stress index (-)

WU_{%agriculture}: fraction of agricultural water use (-)

WDF_i: water deprivation factor (m3 deprived/m3 consumed)

HDF_{malnutrition,i}: human development factor (-)

WR_{malnutrition}: per-capita water requirement to prevent malnutrition (m3/yr*capita)

 EF_i : effect factor (capita *yr/m3 deprived) \rightarrow Annual number of malnurished people per water quantity deprived

 $DF_{malnutrition}$: damage factor (DALY/yr*capita) \rightarrow Damage caused by malnutrition

WU_{consumptive}: consumptive water use (m3)

CF_{malnutrition}: specific damage per unit of water consumed (DALY/m3 consumed)

) LC-IMPACT

Pfister et al 2009: Impacts on human health

DLC-IMPACT

Pfister et al 2009: Impacts on human health

Summary of Uncertainties on watershed level

We assessed uncertainty using k as dispersion factors:

- Median * k results the 97.5% confidence interval
- Median / k results the 2.5% confidence interval

	k _{wsi}	К _{СF}
Average	2.76	18.14
Min	1.68	2.07
Max	12.20	571.22

Uncertainty levels until midpoint (WSI)

Impact assessment model step	Function	Parameters	k-value / Uncertainty	Main source for	
			function	uncertainty	
Withdrawal to availability ratio (WTA)					
		Availability	GIS model	Based on Fekete et al. (2004)	
		Withdrawals	HDI function	Based on Alcamo et al. (2003)	
Water Stress Index (WSI)					
		VF-exponent	Binominal	Assumption of data	
			distribution (80/20%,)	accuracy	
	WTA* function		VF	Precipitation distribution analysis	
	WSI function		1.7	Assumption considering the logistic function	
Details: http://w	ww.ifu.ethz.ch/	ESD/downloads/	Uncertainty wate	r LCIA.pdf	

Related uncertainties: WSI

Uncertainty levels midpoint (WSI) to endpoint CF

Damage Assessment				
	N	Agricultural water use share	HDI function (See Annex)	Based on Alcamo et al. (2003)
		HDI values	1 .7-0.55 • H DI	Assumption based on HDI concept
	HDF function		4.83 (See Annex)	From analysis of HDF function
	r	Water requirements	3.0	Assumption based on correlation analysis
(Damage per case relation		2.0 (See Annex)	Based on continental damage reports (WHO 2007)

Details: http://www.ifu.ethz.ch/ESD/downloads/Uncertainty water LCIA.pdf

Endpoint CF uncertainty

k-value of endpoint characterization factors (CF) on watershed level.

Uncertainty due to aggregation on country level (Variability)

k-value caused by the aggregation of watershed to country resolution for endpoint assessment

Country CF uncertainty (endpoint)

Total endpoint impact uncertainty on country resolution combining uncertainties of watershed model and due to aggregation.

Potential future improvements

- Better hydrological models and water cosnumption data are required
- Further research on the cause-effect chain is necessary to decrease uncertainty

Green Water (Inventory method)

Soil-moisture use impact pathway

NET_{soil-water} = **ET_{x, i}** - ET_{PNV,i}

- Soil-moisture consumption (mm/y=l/m²y) under a specific human land use x (e.g., cultivation of wheat) at the location i
- How to get ET_{x, i}?
 - 1. It can be measured in-situ with lysimeters...
 - 2. ...estimated following models...
 - 3. ...or approximated by adoption of figures from databases and from previous studies.

$NET_{soil-water} = ET_{x. i} - ET_{PNV.i}$

- Evapotranspiration $(mm/y=l/m^2y)$ of the natural reference system (i.e., PNV) at the location *i*
- Two methods were combined to calculate it:

k:

Calibrated approach: $k_{opt,i} = k_i$ for min $|ET_{PNV,i} - AET_i|$

Spatial aggregation of k_{opt,i} & ET_{PNV,i}

Spatial aggregation is essential to make values usable in LCA

Potential future improvements

- Better models and actual and reference evapotranspiration are required
- Further research on linking soil-moisture water consumption to the described characterization models is needed (e.g. distinction of gorund and surface water effect).

References

- Amores, Maria José; Verones, Francesca; Raptis, Catherine; Juraske, Ronnie; Pfister, Stefan; Stoessel, Franziska; Antón, Assumpció; Castells, Francesc; Hellweg, Stefanie (2013): Biodiversity impacts from salinity increase in a coastal wetland. ES&T just accepted manuscript. DOI: 10.1021/es3045423
- Hanafiah M.M., Xenopoulos M.A., Pfister S., Leuven R.S.E.W., Huijbregts M.A.J. 2011. Characterization factors for water consumption and greenhouse gas emissions based on freshwater fish species extinction. Environ Sci Technol, 45 (12): 5272-5278.
- Pfister, S. and S. Hellweg (2011). Surface water use human health impacts. Report of the LC-IMPACT project (EC: FP7). http://www.ifu.ethz.ch/ESD/downloads/Uncertainty_water_LCIA.pdf
- Van Zelm R., Schipper A.M., Rombouts M., Snepvangers J., Huijbregts M.A.J. 2011. Implementing groundwater extraction in life cycle impact assessment: characterization factors based on plant species richness. Environ Sci Technol, 45 (2): 629-635.
- Verones F., Bartl K., Pfister S., Jimenéz Vílchez R., Hellweg S. 2012. Modeling the local biodiversity impacts of agricultural water use: case study of a wetland in the coastal arid area of Peru. Environ Sci Technol, DOI: 10.1021/es204155g.
- Verones, Francesca; Pfister, Stephan; Hellweg, Stefanie (submitted): Quantifying area changes of internationally important wetlands due to water consumption in LCA. Environmental Science&Technology, submitted 18 January 2013
- Verones, Francesca; Pfister, Stephan; Saner, Dominik; Baisero, Daniele; Rondinini, Carlo; Hellweg Stefanie (submitted): Effects of consumptive water use on biodiversity in wetlands of international importance. Environmental Science&Technology, submitted 18 January 2013