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ABSTRACT 27 

For warm-blooded species, the hazardous dose of a chemical (HD50) is an upcoming and 28 

important characteristic in the assessment of toxic chemicals. Generally, experimental 29 

information is available for a limited number of warm-blooded species only, which causes 30 

statistical uncertainty. Furthermore, when small datasets contain an unrepresentative sample 31 

of species, they can cause systematic uncertainty in chemicals’ hazardous doses. The number 32 

of species can be enlarged with interspecies correlation estimation (ICE) models, but these 33 

are uncertain themselves. The goal of this study is to quantify the possible gain in reliability 34 

of the HD50 values for warm-blooded wildlife species after enlargement of the sample size 35 

with ICE predictions. For 1137 chemicals, we compared systematic uncertainty and statistical 36 

uncertainty between HD50 values based on experimental data (HD50Ex) and on datasets 37 

combining experimental data and ICE predictions (HD50Co). HD50Ex values ranged between 38 

1.0·10
-1

 and 9.5·10
3 

mg·kgwwt
-1

, and HD50Co values between 1.1·10
0
 and 6.1·10

3
 mg·kgwwt

-1
. 39 

For over 97 percent of the chemicals, HD50Ex values exceeded HD50Co values, with a 40 

systematic uncertainty (i.e. the ratio of HD50Ex/HD50Co) of typically 3.5. The limited 41 

availability of experimental toxicity data, predominantly for mammals, resulted in a 42 

systematic underestimation of the wildlife toxicity of a chemical. Statistical uncertainty 43 

factors (i.e. the ratio of the 95
th

/5
th

 percentile) quantified the statistical uncertainty in the 44 

HD50 values. The statistical uncertainty factors ranged between 1.0·10
0
 and 2.5·10

22
 for the 45 

experimental dataset, and between 4.8·10
0
 and 1.1·10

2
 for the combined dataset. For all 46 

sample sizes, median statistical uncertainty factors were the largest for combined datasets. 47 

However, combining experimental toxicity data with ICE predictions makes it possible to 48 

reduce the upper limit of the range for statistical uncertainty factors. We conclude that, by 49 

combining experimental data with ICE model predictions, the validity of the HD50 value can 50 

be improved and high statistical uncertainty can be reduced, particularly in cases of limited 51 
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toxicity data, i.e. data for mammals only or a sample size of n ≤ 4. Keywords – hazardous 52 

dose (HD50), toxicity estimates, uncertainty, interspecies correlation estimations, warm-53 

blooded species  54 
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1. INTRODUCTION 55 

 56 

Several sample statistics are used to describe the toxicity of chemical exposure and 57 

uptake. One of them is the dose or environmental concentration of a chemical toxic to at least 58 

50 percent of the individuals in 50 percent of all species. This hazardous dose or 59 

concentration (HD50 or HC50, respectively) is estimated by the median from all available 60 

species-specific LD50 or LC50 values. It implies that at least 50 percent of the individuals in 61 

50 percent of all species is expected to be protected against the chemical’s toxic effects. In 62 

the Sediment Quality Triad concept (Long and Chapman, 1985), the HC50 is used in the 63 

integrated use of site-specific chemical, toxicological and ecological information. In addition, 64 

Kooijman (1987) and Luttik and Aldenberg (1997) suggested that by applying safety factors 65 

to the HD50 or HC50, a hazardous dose or concentration for sensitive species can be derived. 66 

In life cycle impact assessment, the HD50 and HC50 are directly applicable, because a 67 

median estimate for the effect of chemicals is used (Hauschild, 2005). Van de Meent and 68 

Huijbregts (2005) explained how life cycle assessment effect factors can be calculated from 69 

the median toxicity value. Somewhat simpler is the linear approach recommended by 70 

Pennington et al. (2004), which has also been used to calculate effect factors for warm-71 

blooded species from the HD50 (Golsteijn et al., 2012). In this study, we focus on warm-72 

blooded species only. Since the HD50 is an upcoming and important characteristic in the 73 

assessment of toxic chemicals, it is of great importance to know not only its absolute value 74 

but also its uncertainty.  75 

The size of the uncertainty in the HD50 is directly determined by, among other things, the 76 

number of species in the HD50 sample (Luttik and Aldenberg, 1997). Usually, the sample 77 

size is small. Larsen and Hauschild (2007) and Henning-de Jong et al. (2009) emphasized the 78 

importance of finding an optimal method for making best estimates of toxicity based on small 79 
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datasets. In this paper, we will refer to the uncertainty caused by small sample sizes as 80 

statistical uncertainty. Furthermore, when small datasets contain an unrepresentative sample 81 

of species, they can cause systematic uncertainty in chemicals’ hazardous doses. For the 82 

estimation of hazardous doses for warm-blooded species, mammals and birds are grouped 83 

(resembling Posthuma et al., 2002; Golsteijn et al., 2012). However, experimental tests are 84 

frequently based on a small number of mammalian species, even though birds are suggested 85 

to be more sensitive to chemicals (Schafer, 1972; McConnell, 1985; Van der Wal et al., 86 

1995). 87 

The sample size can be enhanced by increasing the number of laboratory experiments, 88 

which is expensive and ethically controversial. Quantitative structure-activity relationships 89 

between chemicals (QSARs) have also been used for effect estimates in chemical risk 90 

assessment (e.g. Devillers and Devillers, 2009). As an additional approach, interspecies 91 

correlation estimation (ICE) models have been developed to estimate the toxicity of 92 

chemicals. These models have been used by Asfaw et al (2003), Awkerman et al (2008; 93 

2009), and Raimondo et al (2007) to develop SSDs for wildlife species for a range of 94 

chemicals. With ICE models, acute toxicity values of a chemical to multiple species can be 95 

predicted from a single experimental acute toxicity value of the chemical to a so-called 96 

surrogate species (Asfaw et al., 2003). However, the introduction of estimated effect data 97 

brings extra uncertainty in the HD50 input data. It is unknown whether this extra uncertainty 98 

outweighs the uncertainty caused by a small experimental sample size.  99 

The goal of this study is to quantify the possible gain in reliability of the HD50 values for 100 

warm-blooded wildlife species after enlargement of the number of species with ICE model 101 

predictions. We studied systematic uncertainty and statistical uncertainty in HD50 values in 102 

relationship with sample size.  103 

 104 
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 105 

2. METHODOLOGY  106 

 107 

2.1 Hazardous dose 108 

The hazardous dose of a chemical x (HD50x) was estimated by the geometric mean of the 109 

log-normally distributed LD50 values (i.e. the oral doses of chemical x that are expected to 110 

kill 50 percent of the individuals in a given population). Therefore, log HD50x equals the 111 

arithmetic mean of the log-transformed LD50 values (quantified as unit of chemical weight 112 

per unit of species wet weight, i.e. mg·kgwwt
-1

): 113 

n

i

xix LD
n

HD
1

,50log
1

50log  (1) 114 

where n is the number of warm-blooded species for which toxicity data are available, and 115 

LD50i,x is the oral dose of chemical x that is lethal to 50 percent of the individuals of species i 116 

(mg·kgwwt
-1

). A comparison was made between HD50 values based on experimental data only 117 

(HD50Ex), and on a combined dataset of experimental values and ICE estimates (HD50Co). 118 

For the calculations of HD50Co, experimental data were preferred over model predictions (see 119 

Figure 1).  120 

 121 

2.2 Experimental data  122 

Oral LD50 values were obtained from experimental studies reported in the Registry of 123 

Toxic Effects of Chemical Substances (RTECS, Accelrys Inc., 2011), taking into account 124 

three criteria. First of all, in order to prevent dependency between the effect dataset used for 125 

derivation of the ICE models (Raimondo et al., 2010) and the effect data used in this study, 126 

we excluded data for chemicals that were present in the ICE model dataset. Secondly, toxicity 127 

values indicating ranges or > and < values were not included. Finally, per chemical, 128 

experimental LD50 values should be available for at least two species of which at least one 129 
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could function as a surrogate species in the ICE models from Raimondo et al. (2010). In case 130 

there were multiple toxicity values available for the same species, we used the geometric 131 

mean. In the end, our dataset consisted of 1137 chemicals.  132 

 133 

2.3 Interspecies Correlation Estimation 134 

We used the ICE models available from Raimondo et al. (2010), in order to enhance the 135 

dataset of experimental LD50 values. The ICE statistical models are log-linear least square 136 

regression models (Asfaw et al., 2003). The slope (b) and intercept (a) for each ICE-137 

regression were derived from the equation: 138 

)50log()50log( ,, xixj LDbaLD  (2) 139 

where LD50j,x refers to the predicted toxicity value of chemical x for species j, and LD50i,x 140 

refers to the toxicity value of chemical x for surrogate species i. The ICE models were 141 

applied only within the toxicity range they were derived from by Raimondo et al. (2010). As 142 

RTECS (Accelrys Inc., 2011) gives acute toxicity data on a genus level and the ICE models 143 

from Raimondo et al. (2010) require implementation on a species level, we used RTECS 144 

toxicity values for the most commonly used test species. Hence, rat toxicity values were used 145 

for surrogate species ‘Rattus norvegicus’, pigeon toxicity values for ‘Columba livia’, duck 146 

toxicity values for ‘Anas platyrhynchos’, and quail toxicity values for ‘Coturnix japonica’. 147 

For species’ toxicity values that could be predicted from more than one surrogate species, we 148 

chose the prediction with the lowest standard deviation.  149 

 150 

2.4 Systematic uncertainty 151 

We estimated HD50 values based on experimental data only, and on a combined dataset 152 

of experimental values and ICE predictions, and calculated systematic uncertainty as follows: 153 

xCoxExxsys HDHDUF ,,, 50/50  (3) 154 
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in which UFsys,x is the systematic uncertainty factor for the hazardous dose of chemical x, 155 

HD50Ex,x and HD50Co,x are the hazardous doses for chemical x based on the experimental 156 

dataset and the combined dataset, respectively. We calculated the systematic uncertainty for 157 

datasets including all wildlife species for which data were available (i.e. mammals and birds), 158 

and for datasets with only mammalian data. 159 

 160 

2.5 Statistical uncertainty  161 

We quantified the statistical uncertainty separately for the HD50 values based on 162 

experimental toxicity values and on a combination of experimental and predicted toxicity 163 

data. In both cases, statistical uncertainty in the HD50 values was quantified by an 164 

Uncertainty Factor, based on the 90% confidence interval (CI) of the log HD50 values. To be 165 

exact, we described the uncertainty in the log HD50 predicted from a sample with normally 166 

distributed log LD50 values and unknown variance (Roelofs et al., 2003).  Subsequently, we 167 

calculated a statistical uncertainty factor (UFstat,x) according to: 168 

xSEMt

xstat PPUF 90.02

05.095.0, 10/  (4) 169 

were P0.95 and P0.05 are the 95
th

- and 5
th

-percentile of the log HD50x distribution, t0.90 is the 170 

value of the t-distribution for the log HD50x that corresponds to the 90% CI depending on the 171 

degrees of freedom, and SEMx is the standard error of the log HD50x. 172 

Experimental Dataset – The standard error of the log HD50x based on experimental data 173 

only (SEMEx,x) was calculated according to: 174 

nsSEM xExxEx /2

,,

     

(5)

 

175 

in which       176 

n

i

xExxixEx HDLD
n

s
1

2

,,

2

, )50log50(log
1

1
 (6) 177 
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In these equations, 
2

,xExs  is the variance of the experimental log LD50 values for chemical x; 178 

n is the number of experimental LD50x values in the HD50x calculation; LD50i,x are the 179 

LD50 values for chemical x per experimentally tested species i; and HD50Ex,x is the 180 

hazardous dose for chemical x in the experimental dataset.  181 

Combined Dataset – For the combination of experimental and predicted toxicity data, the 182 

standard error of the log HD50 (SEMCo,x) was calculated according to: 183 

2

,2

22

,

,
)(

xICE

xCo

xCo s
mn

m

mn

s
SEM

 

(7) 184 

in which  185 

mn

ji

xCoxCoxCo HDLD
mn

s
1

2

,,

2

, )50log50(log
1

1
 (8) 186 

2

1

,

2

,

1 m

j

xjxICE s
m

s

 

(9)

 

187 

In these equations, 
2

,xCos is the variance of all log LD50 values available for chemical x, 188 

both tested and predicted; n is the number of experimental LD50x values in the HD50x 189 

calculation; m is the number of predicted LD50x values in the HD50x calculation; 
2

,xICEs  is the 190 

squared average regression error of the ICE models used for predicting the log LD50 of 191 

chemical x; LD50Co,x is the experimentally tested (i) or predicted (j) toxicity value of 192 

chemical x; HD50Co,x is the hazardous dose of chemical x for the combined dataset; and sj,x is 193 

the standard deviation of the predicted log LD50 for chemical x in species j, calculated 194 

according to Mendenhall and Beaver (1994). For the calculation steps of sj,x, we refer to the 195 

supporting information (par. 1.2). Equation 9 holds for situations in which the residual errors 196 

in the ICE-predictions are fully correlated (r=1), and is further explained in the supporting 197 

information (par 1.2). 198 

 199 
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 200 

3. RESULTS 201 

 202 

We calculated hazardous doses for a set of 1137 chemicals. HD50 values ranged between 203 

1.0·10
-1

 and 9.5·10
3 

mg·kgwwt
-1 

for the experimental data, and between 1.1·10
0
 and 6.1·10

3
 204 

mg·kgwwt
-1

 for the combined dataset. HD50 values from experimental datasets exceeded the 205 

ones from combined datasets for over 97 percent of the chemicals, with a systematic 206 

uncertainty factor of typically 3.5.  Figure 2a shows that, in general, we observed an increase 207 

in the systematic uncertainty of chemicals’ hazardous doses as the HD50Ex value increased. 208 

For the small cloud of data points in the top right, the sample sizes of the HD50Co values 209 

were all smaller than eight species. Including only LD50 values tested or modeled for 210 

mammalian species, this trend was generally not observed (see Figure 2b). However, in 211 

Figure 2b two separate clouds of data points can be observed. The lower group represents 212 

HD50Ex values based on a median sample size of n=3 and HD50Co values based on a median 213 

sample size of n=10. For the upper group the difference in sample size is much smaller, as 214 

HD50Ex and HD50Co values were based on median sample sizes of n=2 and n=5, respectively. 215 

Obviously, the sample sizes of the different datasets differed to a large extent. The 216 

datasets with experimental effect data contained toxicity values per chemical for 2 to 11 217 

warm-blooded species (median n=2). Rat and mouse LD50 values were available for 98 and 218 

91 percent of the chemicals, respectively. For less than 6 percent of the chemicals there was 219 

at least one LD50 value for birds available. With both experimental values and ICE 220 

predictions, the datasets contained toxicity values per chemical for 3 to 43 species (median 221 

n+m=21). Less than 0.3 percent of the chemicals had no LD50 values for birds in their 222 

combined dataset. Figure 3a shows that the systematic uncertainty of a chemical’s hazardous 223 

dose decreased as the number of species for which toxicity was tested increased. We did not 224 
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find a similar trend for systematic uncertainty if we included only LD50 values tested or 225 

modeled for mammalian species (see Figure 3b). 226 

We compared the statistical uncertainty factors of the hazardous doses from experimental 227 

and combined datasets.  We observed a large difference in the ranges of UFstat values between 228 

the experimental and the combined dataset. The statistical uncertainty factors ranged between 229 

1.0·10
0
 and 2.5·10

22
 for the experimental dataset, and between 4.8·10

0
 and 1.1·10

2
 for the 230 

combined dataset (see SI par. 2.1). For experimental datasets, UFstat values ranged, for 231 

instance, twenty-two orders of magnitude for n=2 and four for n=4 (see SI par. 2.1). Figure 4 232 

illustrates the influence of the number of species in the experimental dataset on the 233 

uncertainty factor. For both HD50Ex and HD50Co values we observed that the statistical 234 

uncertainty decreased with increasing numbers of species included in the HD50 calculations. 235 

For all sample sizes, median statistical uncertainty factors were the largest for combined 236 

datasets. However, combining experimental data with ICE predictions makes it possible to 237 

reduce the upper limits of the uncertainty factor ranges.  238 

 239 

 240 

4. DISCUSSION 241 

 242 

In this study, we calculated hazardous doses for warm-blooded species based on 243 

experimental data and on a combined dataset of experimental values and model predictions. 244 

Here, we discuss the interpretation of our findings, including the uncertainties associated with 245 

our methodology, and the conclusions. 246 

For over 97 percent of the chemicals, HD50 values from experimental datasets exceeded 247 

the ones from the combined dataset. This finding was related to the low diversity of species 248 

for which toxicity values were available. Laboratory experiments are predominantly 249 



12 
 

performed on rodent species, in particular rats and mice, because of, among other things, their 250 

manageability under laboratory conditions. Our experimental dataset also contained mainly 251 

rodent data. Awkerman et al. (2009) showed rodents are most often in the least sensitive 252 

quartile of species sensitivity distributions. Moreover, several authors suggest that birds may 253 

be more sensitive than mammals for the effects of chemical exposure (Schafer, 1972; 254 

McConnell, 1985; Van der Wal et al., 1995). For example, Van der Wal et al. (1995) 255 

concluded from a principal component analysis of a combined dataset of birds and mammals 256 

that there is a clear difference in sensitivity between classes. Their analysis showed that 257 

although within each class the magnitude of the differences in sensitivity is similar, as a 258 

group mammals are less sensitive than birds. These studies all point out that, as a group, birds 259 

are the most sensitive wildlife species. In line with that, Figures 2b and 3b show barely 260 

systematic uncertainty between HD50Ex values and HD50Co values if we only included 261 

mammalian toxicity data, illustrating the importance of including avian toxicity data in the 262 

estimation of a HD50 for warm-blooded species. Furthermore, in figure 2b, we observed two 263 

separate clouds of data points, showing how HD50Co values approach HD50Ex values closer if 264 

their samples sizes do not deviate too much. This finding suggests that even within the group 265 

of mammals, systematic uncertainty can be present if the sample size is too small and the 266 

diversity of species too low. 267 

For both experimental and combined datasets, we observed a reduction in statistical 268 

uncertainty with increasing numbers of species included in the HD50 calculations. Other 269 

authors found as well that the number of species tested per chemical is a dominant factor in 270 

the uncertainty distributions of median toxicity values for both warm-blooded species (Luttik 271 

and Aldenberg, 1997) and cold-blooded species (Aldenberg and Jaworska, 2000; Pennington, 272 

2003; Harbers et al., 2006; van Zelm et al., 2007; Van Zelm et al., 2009). E.g., Van Zelm et 273 

al. (2007) studied the ranges in statistical uncertainty factors of the median lethal 274 
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concentrations of high production volume chemicals. They found twenty-five orders of 275 

magnitude for n=2 reducing to five orders of magnitude for n=4. We showed that the 276 

combination of experimental and predicted data reduces the upper limit of the range for 277 

statistical uncertainty factors, in cases of limited experimental toxicity data (n ≤ 4).  278 

As is shown in Figure 4, statistical uncertainty does not decrease for all chemicals by 279 

including interspecies correlation predictions. However, small experimental samples 280 

frequently consist of relatively closely related rodents, and are therefore likely to show a 281 

smaller spread in LD50 values than relatively large samples with a higher diversity in 282 

species. Due to this bias in sample composition, small experimental samples may 283 

underestimate statistical uncertainty. Therefore, enhancement of experimental toxicity 284 

datasets with ICE predictions may actually result in more prominent reductions of statistical 285 

uncertainty than what was found in this study. 286 

 287 

 288 

5. CONCLUSION 289 

 290 

We compared HD50 values based on experimental data only and on a combined dataset of 291 

experimental values and ICE predictions, and looked at systematic and statistical uncertainty 292 

of chemicals’ hazardous doses. We found that the limited availability of experimental toxicity 293 

data, predominantly for mammals, resulted in a systematic underestimation of the wildlife 294 

toxicity of a chemical. This emphasizes the importance of including avian toxicity data in the 295 

estimation of a HD50 for warm-blooded species. Consequently, we recommend including 296 

toxicity data of both mammals and birds in risk assessments or life cycle impact assessments 297 

where HD50 values for warm-blooded wildlife species are used. We conclude that, by 298 

combining experimental data with ICE model predictions, the validity of the HD50 value can 299 
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be improved and high statistical uncertainty can be reduced, particularly in cases of limited 300 

toxicity data, i.e. data for mammals only or a sample size of n ≤ 4. 301 

 302 

Supplementary data – the supplementary data provides details about the uncertainty 303 

calculations. It also gives the complete list of HD50 values based on experimental and 304 

combined datasets, together with the statistical and systematic uncertainty factors. 305 

 306 
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Figure 1:  Flow chart of the handling of LD50 values for chemical x in the calculations 393 

of HD50 values based on a combined dataset of experimental values and ICE 394 

predictions. 395 
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Figure 2:  Hazardous doses based on a dataset of experimental toxicity data (HD50Ex) 397 

plotted against hazardous doses based on a combined dataset of experimental 398 

and predicted toxicity data (HD50Co), for all species (a) and for mammals only 399 

(b). N is the number of chemicals. The dashed line indicates the 1:1 relation. 400 
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Figure 3: Relationship between the number of species for which toxicity was 402 

experimentally tested (n) and the systematic uncertainty factor of the HD50 403 

value (UFsys calculated as the ratio of the HD50 value based on experimental 404 

data and the HD50 value based on both experimental data and model 405 

predictions), for all species (a) and for mammals only (b). The columns 406 

represent the 25th and 75th percentile, and the whiskers the 5th and 95th 407 

percentiles. In the columns, the median UFsys value is marked. N is the number 408 

of chemicals. 409 

 410 

Figure 4: Box plots of the statistical uncertainty factors of the HD50 values (UFstat) per 411 

number of species for which toxicity was experimentally tested (n), for HD50 412 

values based on experimental data (HD50Ex) and on both experimental data 413 

and model predictions (HD50Co). The columns represent the 25th and 75th 414 
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percentile, and the whiskers the 5th and 95th percentiles. In the columns, the 415 

median UFstat value is marked. N is the number of chemicals. 416 


