

Dynamic multi-crop model to characterize impacts of pesticides in food

P. Fantke, R. Juraske

A. Antón, E. Sevigné, A. Kounina

Which food crop has highest pesticide load?

Goals

After the course, all participants will be able to:

- Explain the principles and processes involved in the distribution of pesticides applied to different food crops,
- Quantify potential health impacts from pesticide intake via food crop consumption, and
- Discuss different potentials for pesticide substitution.

Contents

- Background and scope
- Mass balance system
- From harvest fraction to intake fraction
- Characterization: factors and model
- Pesticide substitution
- Highlights and Summary

- Background and scope
- Mass balance system
- From harvest fraction to intake fraction
- Characterization: factors and model
- Pesticide substitution
- Highlights and Summary

Problem Statement

Problem Statement

Followed Approach – Aim

We aim at ...

- Quantifying potential health impacts caused by pesticide use (no arbitrary measures like 'MRL'),
- Comparing pesticides in terms of their health impact,
- Giving recommendations for optimizing pesticide use.

Methodological tool of choice ...

- Life Cycle Impact Assessment (LCIA)
- Based on average values, not worst case assumptions (basis for comparative assessment)

Followed Approach – Impact Pathway

Followed Approach – Scope

Considered crops:

Wheat (68% of cereals)

• Paddy rice (97% of paddy cereals)

Tomato (15% of herbaceous vegetables)

Apple (13% of fruit trees)

Lettuce (14% of leafy vegetables)

Potato (51% of roots and tubers)

45% of global vegetal consumption

- Background and scope
- Mass balance system
- From harvest fraction to intake fraction
- Characterization: factors and model
- Pesticide substitution
- Highlights and Summary

Physical System

Modeled System

Modeled System – Mass Balance

$$\frac{d\vec{m}(t)}{dt} = \mathbf{K} \, \vec{m}(t)$$

 \vec{m} : vector of masses [kg]

K: matrix of rate

constants k [d⁻¹]

t : time [d]

Solution for pulse application ...

$$\vec{m}(t) = \exp(\mathbf{K} t) \ \vec{m}(0)$$

- → System will be diagonalized (decomposed) to arrive at solution with matrix exponential
- → Further reading: Fantke et al., 2013, EMS, 40: 316-324

Mass Balance – Rate Constants

$$\frac{d\vec{m}(t)}{dt} = \mathbf{K} \, \vec{m}(t)$$

 \vec{m} : vector of masses [kg]

K: matrix of rate

constants k [d⁻¹]

t : time [d]

Matrix of rate constants for ...

- Diffusive/advective transfers between compartments
 - → ,off-diagonal elements'
- Degradation processes within compartments
 - → incorporated into ,main diagonal elements'

Mass Balance – Rate Constants

$\frac{d\vec{m}}{dt}$	$\frac{(t)}{t}$	K $\vec{m}(t)$	$\vec{n}(t)$ \vec{m} : vector of matrix of ration constants k t : time [d]		matrix of rate constants <i>k</i> [d ⁻¹]	[kg]
	•	V air	soil	• • •	leaf	
K :=	air	$-k_{ m air,total}$	$k_{air\leftarrowsoil}$	• • •	k _{air←leaf}	
	soil	$k_{soil\leftarrowair}$	$-k_{\scriptscriptstyle m soil,total}$		0	
	•	•		•••		
	leaf	K _{leaf←air}	0	• • •	- k _{leaf,total}	

Mass Balance – Rate Constants

$$\frac{d\vec{m}(t)}{dt} = \mathbf{K} \, \vec{m}(t)$$

 \vec{m} : vector of masses [kg]

K: matrix of rate

constants k [d⁻¹] t: time [d]

$$\mathbf{K} = \begin{pmatrix} k_{11} & \cdots & k_{1n} \\ \vdots & \ddots & \vdots \\ k_{n1} & \cdots & k_{nn} \end{pmatrix} \text{ with } k_{ij} = \begin{cases} k_{ij} & \text{for } i \neq j \\ -\left(k_{\text{loss},i} + \sum_{l=1, l \neq i}^{n} k_{li}\right) \text{ for } i = j \end{cases}$$

Mass Balance – Initial Conditions

$$\frac{d\vec{m}(t)}{dt} = \mathbf{K} \, \vec{m}(t)$$

 \vec{m} : vector of masses [kg]

K: matrix of rate

constants k [d⁻¹]

t : time [d]

Initial mass (applied pesticide mass) ...

• Is defined as part of vector $\vec{m}(t)$ at time t = 0

→ application time

Final mass (pesticide residues) ...

• Vector $\vec{m}(t)$ at time $t > 0 \rightarrow$ harvest time

Mass Balance – Example

Insecticide cyromazine applied to wheat

Mass Balance – Evaluation

- Background and scope
- Mass balance system
- From harvest fraction to intake fraction
- Characterization: factors and model
- Pesticide substitution
- Highlights and Summary

Harvest Fraction

Mass in all harvested crop parts relative to total applied mass

$$hF = \frac{\sum_{i=1}^{n} m_i(t)}{m_{\text{app}}} \longrightarrow \text{Pesticide mass in harvest}$$

$$\rightarrow \text{Applied pesticide mass}$$

hF : harvest fraction [kg_{in harvest}/kg_{applied}]

 m_i : residual mass in compartment i [kg_{in harvest}]

 $m_{\rm app}$: total applied mass [kg_{applied}]

t: harvest time [d]

Intake Fraction

Mass taken in via consumption relative to total applied mass

 $iF = hF \times PF$

iF : human intake fraction [kg_{intake}/kg_{applied}]

hF: harvest fraction [kg_{in harvest}/kg_{applied}]

PF : food processing factor [kg_{intake}/kg_{in harvest}]

Food processing ...

Intake Fraction – Example

Comparison of 121 pesticides

Intake Fraction – Influencing Aspects

- Background and scope
- Mass balance system
- From harvest fraction to intake fraction
- Characterization: factors and model
- Pesticide substitution
- Highlights and Summary

Characterization Factor

Human toxicity potential relative to total applied mass

Human toxicity effect factor [DALY/kg_{intake}]

→ DALY: disability-adjusted life year

Human Toxicity Effect Factor

Dose-response based on human trials → not available

- Not ethically defendable
- Most human studies focus on acute exposure

Dose-response based on animal trials \rightarrow uncertain!

- Cancer effects: derived from chronic lifetime dose affecting 50% of exposed population (ED_{50})
- Non-cancer effects: ED₅₀ rarely available → ED₅₀ estimated from no-observed effect level (NOEL) assuming linear slope

Characterization Factor – Application

Pesticides applied to fruit trees in EU24 in 2003

Characterization Model – dynamiCROP

dynamiCROP ...

- Is a dynamic plant uptake model,
- Covers human exposure to pesticides from crop intake,
- Includes various crop types,
- Is based on matrix algebra (flexible compartment set),
- Uses Matlab to solve the matrix exponential,
- Is available for download at http://dynamicrop.org

Characterization Model – Framework

Contributions to System Evolution Harvest Fractions Food Processing Factors					
System Data / Boundary Conditions Exposure / Effect Data Primary Processes Secondary Processes System Loss Processes Matrix Framework System Eigendecomposition Mass Conditions (steady state / time t) Contributions to System Evolution Harvest Fractions Food Processing Factors EXPOSURE / IMPACT EPAMEMORK		Substance Property Data			
FATE PROCESSES FRAMEWORK FATE PROCESSES FRAMEWORK MASS COMPUTATION FRAMEWORK Mass Conditions (steady state / time t) Contributions to System Evolution Harvest Fractions Food Processing Factors	INDUIT DATA EDAMENMORK	Crop Property Data			
FATE PROCESSES FRAMEWORK FATE PROCESSES FRAMEWORK MASS COMPUTATION FRAMEWORK Mass Conditions (steady state / time t) Contributions to System Evolution Harvest Fractions Food Processing Factors	INFOT DATA FRAIVIEWORK	System Data / Boundary Conditions			
FATE PROCESSES FRAMEWORK Secondary Processes System Loss Processes Matrix Framework System Eigendecomposition Mass Conditions (steady state / time t) Contributions to System Evolution Harvest Fractions Food Processing Factors		Exposure / Effect Data			
System Loss Processes Matrix Framework System Eigendecomposition Mass Conditions (steady state / time t) Contributions to System Evolution Harvest Fractions Food Processing Factors		Primary Processes			
MASS COMPUTATION FRAMEWORK System Eigendecomposition Mass Conditions (steady state / time t) Contributions to System Evolution Harvest Fractions Food Processing Factors	FATE PROCESSES FRAMEWORK	Secondary Processes			
MASS COMPUTATION FRAMEWORK System Eigendecomposition Mass Conditions (steady state / time t) Contributions to System Evolution Harvest Fractions Food Processing Factors		System Loss Processes			
Mass Conditions (steady state / time t) Contributions to System Evolution Harvest Fractions Food Processing Factors		Matrix Framework			
Contributions (steady state / time t) Contributions to System Evolution Harvest Fractions Food Processing Factors	NAMES CONTRIBUTATION FRANCISMORY	System Eigendecomposition			
Harvest Fractions Food Processing Factors	IVIASS COIVIPOTATION FRAIVIEWORK	Mass Conditions (steady state / time t)			
Food Processing Factors EVECTIONS FOOD Processing Factors		Contributions to System Evolution			
EVECTION / INDECT EDAMEN/OD/		Harvest Fractions			
EXPOSURE / IMPACT FRAMEWORK Direct Intake Fractions		Food Processing Factors			
	EXPOSURE / IMPACT FRAMEWORK	Exposure / Effect Data Primary Processes Secondary Processes System Loss Processes Matrix Framework System Eigendecomposition Mass Conditions (steady state / time t) Contributions to System Evolution Harvest Fractions Food Processing Factors			
Effect Framework (DRFs / ED ₅₀)		Effect Framework (DRFs / ED ₅₀)			
		Data Extraction			
Uncertainty / Sensitivity Framework	>	Uncertainty / Sensitivity Framework			
OUTPUT DATA FRAMEWORK Evaluation of Results	OUTPUT DATA FRAMEWORK	Evaluation of Results			

Characterization Model – Example Results

Health impacts from pesticides applied in EU24 in 2003

crop class	DALY/year				
cereals	6.78				
maize	3.77				
oil seeds	8.82				
potato	1.35				
sugar beet	0.34				
grapes/vines	724				
fruit trees	113				
vegetables	1100				
total	1959 (4.75 to 808,535)				

[upper limit: 45 days per person over lifetime]

Other stressors (EBoDE Report, 2011)

- \rightarrow Exposure to particulate matter PM_{2.5}: 195 days/person
- → Non-smoker exposure to second-hand smoke: 24 days/person

Characterization Model – Uncertainty

Squared geometric standard deviation (GSD^2) = 428

→ Output uncertainty range: from geomean/428 to geomean×428 (output variability >16 orders of magnitude across pesticides)

Characterization Model – Limitations

dynamiCROP is so far limited to ...

- Assess neutral organic pesticides,
- Assessing parent compounds (metabolites not included in assessment → can be assessed separately),
- Combination of Excel and Matlab (or only Matlab) → parameterized version works without Matlab

Characterization Model – Parameterization

complex model

sensitivity study

regression models

$$y = y^{\text{crop}} + y^{\text{soil}} + ...$$
 with $\log y^{\text{crop}} = \alpha^{\text{crop}} + \beta^{\text{crop}} \times z$ $z = f(\Delta t, \text{half-life},...)$...

evaluating results

model parameterization

(factor 4 – 66 mean deviation over harvest fraction range of 10 orders of magnitude)

- Background and scope
- Mass balance system
- From harvest fraction to intake fraction
- Characterization: factors and model
- Pesticide substitution
- Highlights and Summary

Pesticide Substitution – Example

Focus (in comparing pesticides): human health impacts

Example crop: wheat

Assumption: all pesticides equally effective

Pesticide Substitution – Target Pests

Target pests for wheat as example crop (comparing what?)

• Fungi: e.g. leaf rust, mildew

• Insects: e.g. aphids, thrips

• Weeds: e.g. couch grass, foxtail

Pesticide Substitution – Scenario

	scenario	pesticide	ta	rget	t pe	sts	kg _{app} /ha	DALY/ha	DALY/ha	%
			Α	В	С	D				
insecticides	1	$oldsymbol{eta}$ -cyfluthrin	X	X	X		13.75	2.3E-09	1.5E-06	100
		carbaryl		X	X	X	1.48	1.5E-06		
	2	cyhalothrin	X	X	X	X	0.008	2.6E-09	2.6E-09	0.2
		esfenvalerate		X	X	X	0.012	2.6E-11		
2. □	3	α-cypermethrin	X	X	X	X	0.015	2.3E-12	7.3E-12	<0.1
		deltamethrin	X	X	X	X	0.009	5.0E-12		
			Е	F	G	Н				
	1	cyproconazole	X	X	X	X	0.08	6.7E-05	6.9E-05	100
fungicides		azoxystrobin	X	X	X	X	0.238	2.1E-06		
	2	epoxiconazole	X	X	X	X	0.125	1.3E-05	1.3E-05	18.4
		pyraclostrobin	X	X	X	X	0.175	2.0E-08		
<u>.</u> g		fenpropimorph		X	X	X	0.45	6.6E-12		
₽	3	tebuconazole		X		X	0.219	9.7E-09	8.7E-07	1.3
		chlorothalonil	X	X	X		1.5	7.4E-07		
		mancozeb	X	X	X		2.35	1.2E-07		
			J	K	L	M				
	1	pendimethalin	X	X			1.4	8.7E-12	2.0E-11	100
မွ		fenoxaprop-p	X		X		0.069	1.1E-11		
herbicides		prosulfocarb	X	X		X	3.5	1.0E-19		
Ē	2	iodosulfuron		X	X		0.01	7.5E-16	7.6E-16	<0.1
ڄ		propoxycarbazone-sodium	X			X	0.05	3.8E-18		
	3	glyphosate	X	X	X	X	1.37	8.8E-22	8.8E-22	<0.1

Pesticide Substitution – Results

fungicides

A: azoxystrobin, cyproconazole

D: epoxyconazole, fenpropimorph, pyraclostrobin

G : chlorothalonil, mancozeb, tebuconazole

insecticides

B: β-cyfluthrin, carbaryl

E: cyhalothrin, esfenvalerate

H: α-cypermethrin, deltamethrin

herbicides

C: fenoxyprop-P, pendimethalin, prosulfocarb

F: glyphosate

I: iodosulfuron, propoxycarbazone-sodium

Pesticide Substitution – Limitations

In reality, substitution must also consider ...

- Pesticide authorization (country-specific),
- Crop rotation and climate/soil conditions,
- Pest resistance toward certain pesticides,
- Varying pesticide costs (application count, etc.),
- Other impacts (ecotoxicity, groundwater contamination, etc.)

- Background and scope
- Mass balance system
- From harvest fraction to intake fraction
- Characterization: factors and model
- Pesticide substitution
- Highlights and Summary

Highlights

- We are able to characterize health impacts from food crop consumption
- Characterization factors available for 6 crop archetypes and >300 commonly used pesticides
- dynamiCROP model available → dynamic version (matrix-based) and parameterized version (linear, for inclusion in steady state frameworks)

Summary

- Exposure of general public to pesticides dominated by residues in food crops
- Lowest residues: root crops, highest residues: leafy crops (wash your salad!), but also fruits and vegetables
- Dynamic assessment required (time to harvest important)
- LCIA helps to compare impacts between pesticides and between stressors (pesticide health impacts low in comparison with e.g. PM → consider uncertainty!)
- Pesticide substitution helps reducing health impacts (other impacts may dominate → include in scenarios!)

Further Information?

- → Fantke, P., Charles, R., de Alencastro, L.F., Friedrich, R., Jolliet, O., 2011. Plant uptake of pesticides and human health: Dynamic modeling of residues in wheat and ingestion intake. Chemosphere 85: 1639-1647.
- → Fantke, P., Juraske, R., Antón, A., Friedrich, R., Jolliet, O., 2011. Dynamic multicrop model to characterize impacts of pesticides in food. Environ Sci Technol 45: 8842-8849.
- → Juraske, R., Fantke, P., Romero Ramírez, A.C., González, A., 2012. Pesticide residue dynamics in passion fruits: Comparing field trial and modeling results. Chemosphere 89: 850-855.
- → Fantke, P., Friedrich, R., Jolliet, O., 2012. Health impact and damage cost assessment of pesticides in Europe. Environ Int 49: 9-17.
- → Fantke, P., Wieland, P., Wannaz, C., Friedrich, R., Jolliet, O., 2013. Dynamics of pesticide uptake into plants: From system functioning to parsimonious modeling. Environ Model Software 40: 316-324.

Contact: pefan@dtu.dk